The aim of this work was to model the growth of Aspergillus parasiticus and Aspergillus ochraceus, both mycotoxin producers, near to the growth/no growth boundaries and validate those models in sterile maize grain, peanuts and coffee beans. Malt extract agar was adjusted to six different water activities: 0.93, 0.91, 0.89, 0.87, 0.85 and 0.80. Plates were incubated at 10, 15, 20, 25, 30, 37 and 42 °C. For each of the 42 conditions, 10 Petri dishes were inoculated. Both kinetic and probability models were applied to colony growth data. The results of the present study indicate that the developed probability modelling approach could be satisfactorily employed to quantify the combined effect of temperature and water activity on the growth responses of A. ochraceus and A. parasiticus. However, validation of kinetic results led to poor goodness of prediction. In this study, the validation samples were placed near to the expected boundaries of the models in order to test them under the worst situation. Probability of growth prediction under extreme growth conditions was somewhat compromised, but it can be considered acceptable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2010.10.004DOI Listing

Publication Analysis

Top Keywords

temperature water
8
water activity
8
activity growth
8
growth boundaries
8
aspergillus ochraceus
8
aspergillus parasiticus
8
growth
7
modelling temperature
4
aspergillus
4
boundaries aspergillus
4

Similar Publications

Biotin[6]uril, a chiral, water-soluble and anion binding macrocycle, is formed via dynamic covalent chemistry. In this study, we present a scalable and high-yielding synthesis of biotin[6]uril via a mechanochemical solid-state approach. The optimized protocol involves mechanical grinding of solid D-biotin with paraformaldehyde in the presence of 0.

View Article and Find Full Text PDF

Sustainable biomethane production from waste biomass: challenges associated with process optimization in improving the yield.

Environ Sci Pollut Res Int

January 2025

Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka Str. 2, 44-100, Gliwice, Poland.

Various novel technologies are currently under development aimed at improving bio-methane output to tackle challenges related to process stability, biogas production, and methane quality in the anaerobic digestion (AD) process. The management of substrate type, temperature, pH, hydraulic retention time (HRT), organic loading rate (OLR), and inoculum origin is essential for ensuring process effectiveness, minimizing inhibition, and maximizing production of biogas and methane yield. The review emphasizes sustainability, focusing on the environmental and economic benefits of anaerobic digestion, including the reduction of greenhouse gas (GHG) emissions, the minimization of landfill waste, and the provision of renewable energy sources.

View Article and Find Full Text PDF

Facile preparation of a hydrophilic Eu-based ratiometric fluorescent nanosensor for Cu ion detection and imaging in living cells.

Anal Methods

January 2025

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.

In this work, a hydrophilic Eu-based ratiometric fluorescent nanosensor (PAAC-Eu) was developed for Cu ion detection in aqueous solutions and imaging in living cells. The sensor was prepared a simple one-step reaction at room temperature, leveraging the synergistic coordination of commercially accessible polyacrylic acid (PAA) and coumarin-3-carboxylic acid (CCAH) with Eu ions. PAAC-Eu was easy to disperse in aqueous media and exhibited two characteristic emission bands at 406 nm and 618 nm, respectively, upon excitation at 350 nm.

View Article and Find Full Text PDF

A theoretical study on the environmental oxidation of fenpyrazamine fungicide initiated by hydroxyl radicals in the aqueous phase.

Environ Sci Process Impacts

January 2025

Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de l'Atmosphère - PC2A, 59000 Lille, France.

Fenpyrazamine (FPA) is a widely used fungicide in agriculture to control fungal diseases, but its environmental degradation by oxidants and the formation of potential degradation products remain unexplored. This study investigates the oxidation of FPA by hydroxyl radicals (HO˙) using density functional theory (DFT) calculations at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level of theory. Three standard oxidation mechanisms, including formal hydrogen transfer (FHT), radical adduct formation (RAF), and single electron transfer (SET), were evaluated in the aqueous phase, with reaction kinetics analyzed over a temperature range of 283-333 K.

View Article and Find Full Text PDF

The formation of inclusion complexes between Ginsenoside Rg3 and cyclodextrins represents a promising strategy to enhance the solubility of G-Rg3. Nevertheless, the molecular mechanisms underlying the interaction between G-Rg3 and cyclodextrins have yet to be fully elucidated. In this study, we employed a combination of molecular simulation and experimental methodologies to identify the most effective solubilizing carriers among G-Rg3, β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), and 2,6-dimethyl-β-cyclodextrin (DM-β-CD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!