Objective: The number of hematopoietic stem and progenitor cells (HPCs) per cord blood unit is limited, and this can result in delayed engraftment or graft failure. In vitro expansion of HPCs provides a perspective to overcome these limitations. Cytokines as well as mesenchymal stromal cells (MSCs) have been shown to support HPCs ex vivo expansion, but a systematic analysis of their interplay remains elusive.

Materials And Methods: Twenty different combinations of growth factors (stem cell factor [SCF], thrombopoietin [TPO], fibroblast growth factor-1 [FGF-1], angiopoietin-like 5, and insulin-like growth factor-binding protein 2), either with or without MSC coculture were systematically compared for their ability to support HPC expansion. CD34(+) cells were stained with carboxyfluorescein diacetate N-succinimidyl ester to monitor cell division history in conjunction with immunophenotype. Colony-forming unit frequencies and hematopoietic reconstitution of nonobese diabetic severe combined immunodeficient mice were also assessed.

Results: Proliferation of HPCs was stimulated by coculture with MSCs. This was further enhanced in combination with SCF, TPO, and FGF-1. Moreover, these conditions maintained expression of primitive surface markers for more than four cell divisions. Colony-forming unit-initiating cells were not expanded without stromal support, whereas an eightfold increase was reached by simultaneous cytokine-treatment and MSC coculture. Importantly, in comparison to expansion without stromal support, coculture with MSCs significantly enhanced hematopoietic chimerism in a murine transplantation model.

Conclusions: The supportive effect of MSCs on hematopoiesis can be significantly increased by addition of specific recombinant growth factors; especially in combination with SCF, TPO, and FGF-1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2011.02.011DOI Listing

Publication Analysis

Top Keywords

growth factors
12
mesenchymal stromal
8
stromal cells
8
hematopoietic stem
8
stem progenitor
8
progenitor cells
8
msc coculture
8
coculture mscs
8
mscs enhanced
8
combination scf
8

Similar Publications

Platelets as crucial players in the dynamic interplay of inflammation, immunity, and cancer: unveiling new strategies for cancer prevention.

Front Pharmacol

December 2024

Systems Pharmacology and Translational Therapeutics Laboratory, The Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy.

Inflammation plays a critical role in the pathogenesis of various diseases by promoting the acquisition of new functional traits by different cell types. Shared risk factors between cardiovascular disease and cancer, including smoking, obesity, diabetes, high-fat diet, low physical activity, and alcohol consumption, contribute to inflammation linked to platelet activation. Platelets contribute to an inflammatory state by activating various normal cells, such as fibroblasts, immune cells, and vascular cells.

View Article and Find Full Text PDF

Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.

View Article and Find Full Text PDF

Burnout among medical residents and fellows (postgraduate trainees) has been receiving significant attention in the scientific literature with far less focus on the factors that correlate with job satisfaction and well-being. A better understanding of the characteristics that increase job satisfaction (rather than just those that lead to burnout) may allow programs to develop and enhance those positive features, conceivably leading to improved mental health, retention, and recruitment. We hypothesize that job satisfaction among postgraduate trainees is positively impacted by feeling that their work is meaningful, that their work schedules are equitable, and that they are appreciated by their faculty.

View Article and Find Full Text PDF

Objective We evaluated the outcomes of tympanic membrane regenerative treatment using gelatin sponge, recombinant basic fibroblast growth factor (bFGF), and fibrin glue at Yokosuka Kyosai Hospital. Methodology We enrolled a total of 42 patients with tympanic membrane perforations (TMPs) (44 ears; right:left = 21:23) that were treated using gelatin sponge, recombinant bFGF, and fibrin glue between July 2020 and December 2023 at Yokosuka Kyosai Hospital. TMP closure rates, improvement of hearing level, and complications were retrospectively included in the evaluation items.

View Article and Find Full Text PDF

The activation of progenitor cells near wound sites is a common feature of regeneration across species, but the conserved signaling mechanisms responsible for this step in whole-body regeneration are still incompletely understood. The acoel undergoes whole-body regeneration using Piwi+ pluripotent adult stem cells (neoblasts) that accumulate at amputation sites early in the regeneration process. The EGFR signaling pathway has broad roles in controlling proliferation, migration, differentiation, and cell survival across metazoans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!