Multiple myeloma (MM) is a plasma cell malignancy characterized by very complex cytogenetic and molecular genetic aberrations. In newly diagnosed symptomatic patients, the modal chromosome number is usually either hyperdiploid with multiple trisomies or hypodiploid with one of several types of immunoglobulin heavy chain (Ig) translocations. The chromosome ploidy status and Ig rearrangements are two genetic criteria that are used to help stratify patients into prognostic groups based on the findings of conventional cytogenetics and fluorescence in situ hybridization (FISH). In general, the hypodiploid group with t(4;14)(p16;q32) or t(14;16)(q32;q23) is considered a high-risk group, while the hyperdiploid patients with t(11;14)(q13;q32) are considered a better prognostic group. As the disease progresses, it becomes more proliferative and develops a number of secondary chromosome aberrations. These secondary aberrations commonly involve MYC rearrangements, del(13q), del(17p), and the deletion of 1p and/or amplification of 1q. Of the secondary aberrations, del(17p) is consistently associated with poor prognosis. All of these cytogenetic aberrations and many additional ones are now identified by means of high resolution molecular profiling. Gene expression profiling (GEP), array comparative genomic hybridization (aCGH), and single-nucleotide polymorphism (SNP) arrays have been able to identify novel genetic aberration patterns that have previously gone unrecognized. With the integration of data from these profiling techniques, new subclassifications of MM have been proposed which define distinct molecular genetic subgroups. In this review, the findings from conventional cytogenetics, interphase FISH, GEP, aCGH, and SNP profiles are described to provide the conceptual framework for defining the emerging molecular genetic subgroups with prognostic significance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cancergencyto.2010.11.002 | DOI Listing |
Biochemistry
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
In many bacteria, the location of the mRNA start codon is determined by a short ribosome binding site sequence that base pairs with the 3'-end of 16S rRNA (rRNA) in the 30S subunit. Many groups have changed these short sequences, termed the Shine-Dalgarno (SD) sequence in the mRNA and the anti-Shine-Dalgarno (ASD) sequence in 16S rRNA, to create "orthogonal" ribosomes to enable the synthesis of orthogonal polymers in the presence of the endogenous translation machinery. However, orthogonal ribosomes are prone to SD-independent translation.
View Article and Find Full Text PDFPlant Physiol
January 2025
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China.
The endocytic and autophagic pathways play important roles in abiotic stress responses and maintaining cellular homeostasis in plants. Asparagine Rich Proteins (NRPs) are plant-specific stress-responsive proteins that are involved in many abiotic stress-related signaling pathways. We previously demonstrated that NRP promotes PIN FORMED 2 (PIN2) vacuolar degradation to maintain PIN2 homeostasis under abscisic acid (ABA) treatment in Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFPLoS One
January 2025
School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.
The cytotoxic T-lymphocyte antigen-4 (CTLA4) is essential in controlling T cell activity within the immune system. Thus, uncovering the molecular dynamics of single nucleotide polymorphisms (SNPs) within the CTLA4 gene is critical. We identified the non-synonymous SNPs (nsSNPs), examined their impact on protein stability, and identified the protein sequences associated with them in the human CTLA4 gene.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, United States of America.
Negotiating social dynamics among allies and enemies is a complex problem that often requires individuals to tailor their behavioral approach to a specific situation based on environmental and/or social factors. One way to make these contextual adjustments is by arranging behavioral output into intentional patterns. Yet, few studies explore how behavioral patterns vary across a wide range of contexts, or how allies might interlace their behavior to produce a coordinated response.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh.
The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!