Glioma stem cells (GSCs), which are originated from transformed neural stem cells, are tumor-initiating cells of glioma, the most common primary malignant neoplasm of the central nervous system. Extensive studies have shown that bone morphogenetic protein 4 (BMP4) plays an important role in the differentiation and proliferation of neural stem cells. To seek the functions and mechanisms of BMP4 in GSCs, GSCs isolated from U87 human glioma cells by using vincristine were exposed to BMP4 protein. This study shows that BMP4 inhibited U87 GSC proliferation (p < 0.01) via downregulation of cyclin D1 level and promoted GSC apoptosis through induction of Bax expression and inhibition of Bcl-2 and Bcl-xL levels. Thus, these results indicate a new approach of GSC-based glioma treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cbr.2010.0857DOI Listing

Publication Analysis

Top Keywords

stem cells
16
bone morphogenetic
8
morphogenetic protein
8
glioma stem
8
cells glioma
8
neural stem
8
cells
6
protein inhibits
4
inhibits cell
4
cell proliferation
4

Similar Publications

Objective: This study aims to investigate and analyze the differentially expressed genes (DEGs) in CD34 + hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) through bioinformatics analysis, with the ultimate goal of uncovering the potential molecular mechanisms underlying pathogenesis of MDS. The findings of this study are expected to provide novel insights into clinical treatment strategies for MDS.

Methods: Initially, we downloaded three datasets, GSE81173, GSE4619, and GSE58831, from the public Gene Expression Omnibus (GEO) database as our training sets, and selected the GSE19429 dataset as the validation set.

View Article and Find Full Text PDF

iPSCs engrafted in allogeneic hosts without immunosuppression induce donor-specific tolerance to secondary allografts.

Proc Natl Acad Sci U S A

March 2025

Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan.

Currently, most cell or tissue transplantations using induced pluripotent stem cells (iPSCs) are anticipated to involve allogeneic iPSCs. However, the immunological properties of iPSCs in an allogeneic setting are not well understood. We previously established a mouse transplantation model of MHC-compatible/minor antigen-mismatched combinations, assuming a hypoimmunogenic iPSC-setting.

View Article and Find Full Text PDF

Protocol for generating human cerebral organoids from two-dimensional cultures of pluripotent stem cells bypassing embryoid body aggregation.

STAR Protoc

March 2025

Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid 28220, Spain. Electronic address:

Human cerebral organoids (hCOs) provide an excellent model for the study of human brain development and disease. Here, we present a protocol to obtain hCOs directly from two-dimensional (2D) pluripotent stem cell (PSC) cultures, avoiding cell dissociation and posterior embryoid body (EB) aggregation. We describe steps for subjecting 2D cultures to a neural fate and subsequently developing hCOs.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDCs) play a pivotal role in immune responses, particularly against viral infections. pDCs exhibit diverse functions, including interferon production, cytokine secretion, and antigen presentation. Here, we investigate the antigen cross-presentation capacity of pDCs and their role in CD8 T cell activation.

View Article and Find Full Text PDF

Offspring exposed to metformin treatment for gestational diabetes mellitus (GDM) experience altered growth patterns that increase the risk for developing cardiometabolic diseases later in life. The adaptive cellular mechanisms underlying these patterns remain unclear. Therefore, the objective of this study was to determine if chronic metformin exposure associated with GDM treatment elicits infant cellular metabolic adaptations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!