Objective: To investigate the effect of betulinic acid (BA) on the proliferation, migration, apoptosis and cell cycle of pancreatic cancer cells (BxPC-3) in vitro and elucidate the underlying.

Method: The effect of BA on the proliferation of BxPC-3 was measured by using sulforhodamine B (SRB) assay. Migratory ability of BxPC3 cells were detected by wound healing assay, and the morphological change was observed with light microscope. The influence of BA on cell cycle of BxPC-3 cells was tested by flow cytometry (FCM). Apoptosis was analyzed by using Hochest33342-PI double staining. Western blot technologies were applied to detect the expression of Bcl-2 and Bax.

Result: BA exhibited significant cell proliferation and migration inhibition, as well as its potency of inducing apoptosis in BxPC-3 cells in vitro in a dose-dependent manner. The IC50 value for 72 h was 16.54 mg x L(-1). Cell migration was significantly inhibited at 5 mg x L(-1) of BA. Cells treated with BA showed increased cell population in G0 phase, with decreased G2/M phase population. The expression of Bax and Bcl-2 was up and down-regulated respectively in BA-treated BxPC-3 cells in a dose-dependent manner.

Conclusion: BA exerted potent effect on growth inhibition, G0 cell cycle arrest and induction of apoptosis in BxPC-3 cells in vitro, possibly associated with the down-regulation of Bcl-2 and up-regulation of Bax expression. The potent antitumor capacity of BA suggested that it could be a promising new anticancer agent in human pancreatic cancer treatment.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell cycle
16
bxpc-3 cells
16
proliferation migration
12
pancreatic cancer
12
betulinic acid
8
acid proliferation
8
apoptosis bxpc-3
8
cells vitro
8
cell
7
cells
7

Similar Publications

Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018).

View Article and Find Full Text PDF

PO Tetrahedron Assisted Chelate Engineering for 10.67%-Efficient Antimony Selenosulfide Solar Cells.

Adv Mater

January 2025

Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Anisotropic carrier transport and deep-level defect of antimony selenosulfide (Sb(S,Se)) absorber are two vital auses restraining the photovoltaic performance of this emerging thin-film solar cell. Herein, chelate engineering is proposed to prepare high-quality Sb(S,Se) film based on hydrothermal deposition approach, which realizes desirable carrier transport and passivated defects by using tetrahedral PO ion in dibasic sodium phosphate (NaHPO, DSP). The PO Lewis structure, on one hand in the form of [(SbO)(PO)] chelate, can adsorb on the polar planes of cadmium sulfide (CdS) layer, promoting the heterogeneous nucleation, and on the other hand, the tetrahedral PO inhibits horizontal growth of (SbS(e)) ribbons due to size effects, thus achieving desirable [hk1] orientation.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is a type of head and neck cancer (HNC) with a high recurrence rate, which has been reported to be associated with the presence of cancer stem cells (CSCs). Tribbles pseudokinase 3 (TRIB3) is involved in intracellular signaling and the aim of the present study was to investigate the role of TRIB3 in the maintenance of CSCs. Analysis of The Cancer Genome Atlas database samples demonstrated a positive correlation between TRIB3 expression levels and shorter overall survival rates in patients with HNC.

View Article and Find Full Text PDF

Human papillomavirus (HPV)‑positive and -negative head and neck squamous cell carcinoma (HNSCC) are often associated with activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway due to mutations or amplifications in , loss of or activation of receptor tyrosine kinases. In HPV‑negative tumors, (encoding p16 protein) inactivation or (encoding Cyclin D1 protein) amplification frequently results in sustained cyclin‑dependent kinase (CDK) 4/6 activation. The present study aimed to investigate the efficacy of the CDK4/6 inhibitors (CDKi) palbociclib and ribociclib, and the PI3K/Akt/mTOR pathway inhibitors (PI3Ki) gedatolisib, buparlisib and alpelisib, in suppressing cell viability of HPV‑positive and ‑negative HNSCC cell lines.

View Article and Find Full Text PDF

Electrochemistry-enabled Ir-catalyzed C-H/N-N bond activation facilitates [3+2] annulation of phenidones with propiolates.

Chem Commun (Camb)

January 2025

Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.

A mild and efficient [3+2] annulation of phenidones with propiolates has been developed to access -substituted indole alkylamides, enabled by merging electrochemistry with iridium catalysis using an undivided cell at room temperature. The mechanistic studies have confirmed that the electrochemically mediated catalytic cycle of Ir-Ir-Ir exhibits enhanced efficiency, mild reaction conditions, and unconventional selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!