Objective: To get active metabolites from the microbes associated with sea cucumber.

Methods: Fungus was isolated from the sea cucumber, and the species was identified by molecular biology, and then was cultivated in GYP medium, and the metabolites were got by chromatography. Their structures were identified by comprehensive spectroscopic methods.

Results: Fungus HS-1 Epicocum sp. was isolated from the sea cucumber in Weihai, Yellow Sea. Four compounds were got as 5-methyl-6-hydroxy-8-methyoxy-3-methylisochroman (1), 8-hydroxy-3-methylisochroman-1-one (2), peroxy-ergosterol (3) and succinic acid (4).

Conclusion: Fungus HS-1 Epicocum spp. is first isolated from the sea cucumber sample, this research provides new idea for further development of sea cucumber.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sea cucumber
20
fungus hs-1
12
isolated sea
12
hs-1 epicocum
8
sea
7
cucumber
5
[study second
4
second metabolisms
4
fungus
4
metabolisms fungus
4

Similar Publications

Identifying the signatures of intestinal dysbiosis caused by common stresses is fundamental to establishing efficient health monitoring strategies for sea cucumber. This study investigated the impact of six common stress experienced frequently in aquaculture on the growth performance, intestinal homeostasis and microbiota of sea cucumber, including thermal (23°C), hypoosmotic (22‰ salinity), ammonium (0.5 mg/L NH -N), and nitrite (0.

View Article and Find Full Text PDF

Oligosaccharide-assisted resolution of holothurian fucosylated chondroitin sulfate for fine structure and P-selectin inhibition.

Carbohydr Polym

March 2025

School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China. Electronic address:

Fucosylated chondroitin sulfate (FCS) from Holothuria mexicana (FCS) was selected for investigation because of its intriguing branch features. Selective β-eliminative depolymerization and the bottom-up assembly were performed to unravel that FCS consisted of a {D-GlcA-β1,3-D-GalNAc} backbone and branches of alternating Fuc (55 %) and D-GalNAc-α1,2-L-Fuc (45 %), the highest proportion of disaccharide branch reported to date. In branches, sulfation could occur at every free -OH site except O-3 of GalNAc, being the most complex and various structure features of natural FCS.

View Article and Find Full Text PDF

Sex determination factor, a novel male-linked gene in the sea cucumber Apostichopus japonicus: Molecular characterization, expression patterns and effects of gene knockdown.

Comp Biochem Physiol B Biochem Mol Biol

January 2025

Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.

Apostichopus japonicus is a highly significant marine aquaculture species. Research findings have indicated that male sea cucumbers demonstrate a more rapid growth rate compared to females, underscoring the potential advantages of establishing an all-male population. In this study, we identified a specific protein-coding gene (ORFan) within a 4565 bp male fragment and named it sex determination factor (sdf).

View Article and Find Full Text PDF

Preparation and Characterization of Calcium-Chelated Sea Cucumber Ovum Hydrolysate and the Inhibitory Effect on α-Amylase.

Foods

December 2024

Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian 116600, China.

α-amylase can effectively inhibit the activity of digestive enzymes and alter nutrient absorption. The impact of ovum hydrolysates of sea cucumbers on α-amylase activity was investigated in this study. The protein hydrolysates generated using different proteases (pepsin, trypsin, and neutral protease) and molecular weights (less than 3000 and more than 3000) were investigated.

View Article and Find Full Text PDF

Thermal Behavior of Tropical Sea Cucumber of : Preliminary Issues.

Animals (Basel)

December 2024

Departamento de Acuicultura, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, B.C., Mexico.

We investigated the growth, preferences, and thermal resistance of the sea cucumber to understand its thermal biology. Sixty individuals were kept in tanks at two temperatures (23 °C and 26 °C) for 30 days to determine their favorable maintenance temperature. Their survival rates and specific growth rates were measured to establish their ideal conditioning temperature in the laboratory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!