[Effect of heat treatment on the structure of a Cu-Zn-Al-Ni system dental alloy].

Rev Odontol Univ Sao Paulo

Faculdade de Odontología de Bauru Universidade de São Paulo.

Published: June 1992

This article characterizes the structural phases present in the copper-based metallic alloy system "Cu-Zn-Al-Ni" developed for dental use, and relates those phases to other properties. The characterization was obtained after casting (using the lost wax process), and after heat treatment. In order to obtain better corrosion resistance by changing the microstructure, the castings were submitted to 30, 45 and 60 minutes of heat treatment at the following temperatures: 750 degrees C, 800 degrees C, and 850 degrees C. The various phases were analyzed using X-ray diffraction and scanning electron microscopy (SEM). The results after heat treatment showed a phase (probably Cu3Al), that could be responsible for the improvement in the alloy's resistance to corrosion as compared to the as-cast structure.

Download full-text PDF

Source

Publication Analysis

Top Keywords

heat treatment
16
[effect heat
4
treatment
4
treatment structure
4
structure cu-zn-al-ni
4
cu-zn-al-ni system
4
system dental
4
dental alloy]
4
alloy] article
4
article characterizes
4

Similar Publications

Extracellular matrix stiffness regulates colorectal cancer progression via HSF4.

J Exp Clin Cancer Res

January 2025

Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.

Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.

Methods: This study included 107 CRC patients.

View Article and Find Full Text PDF

Assessment of Hsp90β-selective inhibitor safety and on-target effects.

Sci Rep

January 2025

Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA.

The heat shock protein 90 (Hsp90) family of molecular chaperones mediates the folding and activation of ~ 400 client proteins, many of which contribute to oncogenesis. As a result, Hsp90 pan-inhibitors, which inhibit all four Hsp90 isoforms, have been investigated in the clinic for the treatment of cancer. Unfortunately, detrimental side effects were observed and hindered the clinical development of pan-Hsp90 inhibitors.

View Article and Find Full Text PDF

Formamidopyrimidine DNA glycosylase (Fpg) and flap endonuclease 1 (FEN1) are essential to sustaining genomic stability and integrity, while the abnormal activities of Fpg and FEN1 may lead to various diseases and cancers. The development of simple methods for simultaneously monitoring Fpg and FEN1 is highly desirable. Herein, we construct a multiple cyclic ligation-promoted exponential recombinase polymerase amplification (RPA) platform for sensitive and simultaneous monitoring of Fpg and FEN1 in cells and clinical tissues.

View Article and Find Full Text PDF

Type 1 resistant starch (RS1) was prepared by high-pressure homogenization of corn starch (CS) embedded with 0.1 %, 0.3 %, 0.

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!