Human fetal eyes 8-40 weeks gestation (WG) were examined using markers to hematopoietic stem cells (HSC), vascular precursor cells (VPC), monocytes/macrophages and endothelial cells (EC). Electron microscopy and bromo-deoxyuridene labeling were undertaken to confirm the existence of solid vascular cords and to demonstrate vasculogenesis and angiogenesis in developing choroidal tissue. Our results demonstrated that the earliest incipient choroid consisted of vimentin(+) mesenchymal precursor cells which downregulated vimentin expression with maturation. Our observations lead us to conclude that these vimentin(-)/CD34(+)/CD44(+)/CD133(+) HSCs then differentiated into three distinct lineages: single isolated CD34(-)/CD39(+) VPCs that formed solid vascular cords which lumenized and became lined with CD34(+) vascular ECs; CD34(--+)/CD14(+)/CD68(+) monocytes that differentiated into tissue macrophages; and CD133(+)/CD34(--+)/α-smooth muscle actin(+) mural precursor cells that matured into smooth muscle cells and pericytes. Blood vessel formation occurred throughout the whole choroid simultaneously, indicative of in situ differentiation. Vasculogenesis, as evidenced by lumenization of solid vascular cords, was responsible for the formation of the entire choroidal area with angiogenesis, in all three layers of the choroid, only adding to vascular density. These results suggest that formation of the human choroid involves three processes: HSC differentiation, vasculogenesis and angiogenesis. Since vasculogenesis takes place independently of VEGF(165), further insights regarding the molecular mechanisms of vasculogenesis are required to better inform future treatments of choroidal neovascularization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2011.02.009 | DOI Listing |
Cell Mol Life Sci
December 2024
Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Life Sci
December 2024
Department of Biohybrid & Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany. Electronic address:
Aims: Mesenchymal stromal cells (MSCs) are being tested and accepted as a source for cell therapy worldwide. However, the advanced age of the patients, together with the difficulties in achieving the required cell amounts, impede autologous treatments. Reprogramming of MSCs into induced pluripotent stem cells (iPSCs), followed by re-differentiation to MSCs has emerged as a promising and safe method to facilitate the cell expansion and the removal of aging-associated characteristics.
View Article and Find Full Text PDFiScience
December 2024
Research Center of Translational Medicine, Central Hospital Affiliated Shandong First Medical University, Jinan 250013, China.
Vascular complications caused by diabetes mellitus contribute a major threat to increased disability and mortality of diabetic patients, which are characterized by damaged endothelial cells and angiogenesis. Human umbilical cord-derived mesenchymal stem cells (hucMSCs) have been demonstrated to alleviate endothelial cell damage and improve angiogenesis. However, these investigations overlooked the pivotal role of vasculogenesis.
View Article and Find Full Text PDFMed Res Rev
November 2024
Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
At different stages of life, from embryonic to postnatal, varying oxygen concentrations modulate cellular gene expression by enhancing or repressing hypoxia-inducible transcription factors. During embryonic/fetal life, these genes encode proteins involved in adapting to a low-oxygen environment, including the induction of specific enzymes related to glycolytic metabolism, erythropoiesis, angiogenesis, and vasculogenesis. However, oxygen concentrations fluctuate during intrauterine life, enabling the induction of tissue-specific differentiation processes.
View Article and Find Full Text PDFMath Biosci Eng
August 2024
Graduate Program in Materials and Biomaterials Science and Engineering, University of California Merced, Merced, CA 95343, USA.
Vascular cells self-organize into unique structures guided by cell proliferation, migration, and/or differentiation from neighboring cells, mechanical factors, and/or soluble signals. However, the relative contribution of each of these factors remains unclear. Our objective was to develop a computational model to explore the different factors affecting the emerging micropatterns in 2D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!