Influence of FAS on murine mast cell maturation.

Ann Allergy Asthma Immunol

Department of Pharmacology and Experimental Therapeutics, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.

Published: March 2011

Background: FAS has been shown to be involved in the regulation of many immune processes by induction of cellular apoptosis. However, accumulated evidence shows that FAS signaling also exhibits nonapoptotic functions, such as induction of cell proliferation and differentiation. FAS is the only death receptor known to be expressed on murine mast cells (MCs).

Objective: To evaluate the role of FAS on murine MC maturation.

Methods: Mouse bone marrow-derived MCs (BMMCs) or peritoneal MCs were derived from FAS-deficient, FASlpr/lpr, and congenic wild-type strains. The MC degranulation and cytokine release after IgE activation was assessed by measuring β-hexosaminidase, interleukin 13, and tumor necrosis factor α release. Transmission electron microscopy analysis was performed to evaluate the level of BMMC maturation. The surface markers and intracellular preformed mediators were measured as well.

Results: Our data reveal that FAS deficiency has an impact on IgE-dependent activation of BMMCs, resulting in a significant decrease in β-hexosaminidase, interleukin 13, and tumor necrosis factor α release. The total content of preformed mediators (eg, tryptase and β-hexosaminidase) was reduced in BMMCs derived from FAS-deficient mice. We also found that the level of FcεRI in peritoneal mast cells from FAS-deficient mice was significantly diminished. FAS deficiency also influenced the kinetics of BMMC maturation as was revealed by transmission electron microscopy analysis.

Conclusion: Our data show that FAS has an impact on the regulation of mouse MC maturation in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anai.2010.12.001DOI Listing

Publication Analysis

Top Keywords

fas murine
8
murine mast
8
mast cells
8
derived fas-deficient
8
β-hexosaminidase interleukin
8
interleukin tumor
8
tumor necrosis
8
necrosis factor
8
factor release
8
transmission electron
8

Similar Publications

FAP-targeted radioligand therapy with Ga/Lu-DOTA-2P(FAPI) enhance immunogenicity and synergize with PD-L1 inhibitors for improved antitumor efficacy.

J Immunother Cancer

January 2025

Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China

Background: Fibroblast activation protein (FAP)-targeted radioligand therapy, with immunomodulatory effects, has shown efficacy in both preclinical and clinical studies. We recently reported on a novel dimeric FAP-targeting radiopharmaceutical, Ga/Lu-DOTA-2P(FAPI), which demonstrated increased tumor uptake and prolonged retention in various cancers. However, further exploration is required to understand the therapeutic efficacy and underlying mechanisms of combining Ga/Lu-DOTA-2P(FAPI) radioligand therapy with PD-1/PD-L1 immunotherapy.

View Article and Find Full Text PDF

The Impact of Cell-Intrinsic STAT6 Protein on Donor T Cell-Mediated Graft-Versus-Tumor Effect.

Int J Mol Sci

December 2024

Department of Internal Medicine, Division of Gastroenterology and Hepatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.

Bone marrow transplantation (BMT) is mainly performed to restore an anti-tumor immune response, called the graft-versus-tumor (GVT) effect, against leukemia, myeloma and lymphoma. This GVT reactivity is driven by donor T cells, and it can also cause lethal graft-versus-host disease (GVHD). We previously demonstrated that the colonization of mice with helminths preserves the GVT response while suppressing GVHD.

View Article and Find Full Text PDF

VCP controls KCC2 degradation through FAF1 recruitment and accelerates emergence from anesthesia.

Proc Natl Acad Sci U S A

January 2025

Department of Medical Neuroscience, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.

Ubiquitin-proteasomal degradation of K/Cl cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) has been demonstrated to serve as a common mechanism by which the brain emerges from anesthesia and regains consciousness. Ubiquitin-proteasomal degradation of KCC2 during anesthesia is driven by E3 ligase Fbxl4. However, the mechanism by which ubiquitinated KCC2 is targeted to the proteasome has not been elucidated.

View Article and Find Full Text PDF

Policy complexity suppresses dopamine responses.

J Neurosci

January 2025

Department of Physiology, Anatomy and Genetics, University of Oxford.

Limits on information processing capacity impose limits on task performance. We show that male and female mice achieve performance on a perceptual decision task that is near-optimal given their capacity limits, as measured by policy complexity (the mutual information between states and actions). This behavioral profile could be achieved by reinforcement learning with a penalty on high complexity policies, realized through modulation of dopaminergic learning signals.

View Article and Find Full Text PDF

Interleukin-12 (IL-12) is a potent NK cell-stimulating cytokine, but the presence of immunosuppressive myeloid cells such as myeloid-derived suppressor cells (MDSC) can inhibit IL 12-induced NK-cell cytotoxicity. Thus, we hypothesized that trabectedin, a myeloid cell-depleting agent, would improve the efficacy of IL-12 in triple-negative breast cancer (TNBC). In vitro treatment of healthy donor NK cells with trabectedin increased expression of the activation marker CD69 and mRNA expression of T BET (Tbx21), the cytotoxic ligands TRAIL (TNFSF10) and Fas ligand (FASLG) and the dendritic cell (DC)-recruiting chemokine lymphotactin (XCL1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!