Planarian stem cells: a simple paradigm for regeneration.

Trends Cell Biol

Evolutionary Developmental Biology Group, Centre for Genetics and Genomics, University of Nottingham NG7 2UH, UK.

Published: May 2011

Planarians are capable of profound regenerative feats dependent upon a population of self-renewing adult stem cells called neoblasts. The key features of neoblasts are their capacity for indefinite self-renewal, their totipotency and the ability of their progeny to interpret differentiation and polarity signals and correctly replace lost structures after tissue damage. Regeneration in planarians offers a paradigm for understanding the molecular and cellular control of the repair and regeneration of animal tissues, and could provide valuable insights for the safe use of stem cells to repair damaged, diseased and ageing human tissues with little or no regenerative capacities. Here, I review recent progress in understanding neoblasts in regeneration and the growing potential this research has to be broadly informative for human biology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tcb.2011.01.005DOI Listing

Publication Analysis

Top Keywords

stem cells
12
regeneration planarians
8
planarian stem
4
cells simple
4
simple paradigm
4
regeneration
4
paradigm regeneration
4
planarians capable
4
capable profound
4
profound regenerative
4

Similar Publications

Erythropoiesis, a remarkably dynamic and efficient process responsible for generating the daily quota of red blood cells (approximately 280 ± 20 billion cells per day), is crucial for maintaining individual health. Any disruption in this pathway can have significant consequences, leading to health issues. According to the World Health Organization, an estimated 25% of the global population presents symptoms of anemia.

View Article and Find Full Text PDF

Isolation of Human BAMBIhighMFGE8high Umbilical Cord-Derived Mesenchymal Stromal Cells.

J Vis Exp

January 2025

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University;

Umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) present low immunogenicity and potent immunomodulatory effects for treating various diseases. Human UC-MSCs are a heterogeneous population consisting of three main subpopulations with different cell shapes, proliferation rates, differentiation abilities, and immune regulatory functions. Previously, BAMBIMFGE8 UC-MSCs, the first subgroup successfully isolated from UC-MSCs were found to fail to alleviate lupus nephritis.

View Article and Find Full Text PDF

Microglia-mediated neuroinflammation plays a crucial role in Alzheimer's disease (AD). Tinosinenside A (Tis A) is a novel sesquiterpene glycoside isolated from the dried rattan stem of Tinospora sinensis (Lour.) Merr.

View Article and Find Full Text PDF

Background: Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy.

View Article and Find Full Text PDF

Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!