Although the importance of adipose tissue (AT) glucose transport in regulating whole-body insulin sensitivity is becoming increasingly evident and insulin resistance (IR) has been widely recognized, the underlying mechanisms of IR are still not well understood. The purpose of the present study was to determine the early pathological changes in glucose transport by characterizing the alterations in glucose transporters (GLUT) in multiple visceral and subcutaneous adipose depots in a large animal model of naturally occurring compensated IR. AT biopsies were collected from horses, which were classified as insulin-sensitive (IS) or compensated IR based on the results of an insulin-modified frequently sampled intravenous glucose tolerance test. Protein expression of GLUT4 (major isoform) and GLUT12 (one of the most recently discovered isoforms) were measured by Western blotting in multiple AT depots, as well as AS160 (a potential key player in GLUT trafficking pathway). Using a biotinylated bis-mannose photolabeled technique, active cell surface GLUT content was quantified. Omental AT had the highest total GLUT content compared to other sites during the IS state. IR was associated with a significantly reduced total GLUT4 content in omental AT, without a change in content in other visceral or subcutaneous adipose sites. In addition, active cell surface GLUT-4, but not -12, was significantly lower in AT of IR compared to IS horses, without change in AS160 phosphorylation between groups. Our data suggest that GLUT4, but not GLUT12, is a pathogenic factor in AT during naturally occurring compensated IR, despite normal AS160 activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143249PMC
http://dx.doi.org/10.1016/j.bbadis.2011.02.007DOI Listing

Publication Analysis

Top Keywords

naturally occurring
12
occurring compensated
12
visceral subcutaneous
12
subcutaneous adipose
12
insulin resistance
8
glucose transporters
8
change as160
8
as160 activation
8
glucose transport
8
active cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!