Serotonin 1A receptor (5-HT(1A)R) agonists reduce both L-DOPA- and D1 receptor (D1R) agonist-mediated dyskinesia, but their anti-dyskinetic mechanism of action is not fully understood. Given that 5-HT(1A)R stimulation reduces glutamatergic neurotransmission in the dopamine-depleted striatum, 5-HT(1A)R agonists may diminish dyskinesia in part through modulation of pro-dyskinetic striatal glutamate levels. To test this, rats with unilateral medial forebrain bundle dopamine or sham lesions were primed with L-DOPA (12 mg/kg+benserazide, 15 mg/kg, sc) or the D1R agonist SKF81297 (0.8 mg/kg, sc) until abnormal involuntary movements (AIMs) stabilized. On subsequent test days, rats were treated with vehicle or the 5-HT(1A)R agonist ±8-OH-DPAT (1.0 mg/kg, sc), followed by L-DOPA or SKF81297, or intrastriatal ±8-OH-DPAT (7.5 or 15 mM), followed by L-DOPA. In some cases, the 5-HT(1A)R antagonist WAY100635 was employed to determine receptor-specific effects. In vivo microdialysis was used to collect striatal samples for analysis of extracellular glutamate levels during AIMs assessment. Systemic and striatal ±8-OH-DPAT attenuated L-DOPA-induced dyskinesia and striatal glutamate efflux while WAY100635 reversed ±8-OH-DPAT's effects. Interestingly, systemic ±8-OH-DPAT diminished D1R-mediated AIMs without affecting glutamate. These findings indicate a novel anti-dyskinetic mechanism of action for 5-HT(1A)R agonists with implications for the improved treatment of Parkinson's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100430PMC
http://dx.doi.org/10.1016/j.expneurol.2011.02.012DOI Listing

Publication Analysis

Top Keywords

striatal glutamate
12
5-ht1ar agonists
12
glutamate efflux
8
serotonin receptor
8
anti-dyskinetic mechanism
8
mechanism action
8
glutamate levels
8
5-ht1ar
6
striatal
5
glutamate
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!