[Effect of water-soluble polymers on the inhibition of osthole crystallization].

Yao Xue Xue Bao

Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.

Published: December 2010

This paper is to study the inhibitory effect of water soluble polymers--methyl cellulose (MC), hydroxypropyl methyl cellulose (HPMC), hydroxypropyl cellulose (HPC-M), poloxamer (F68) and polyvidon (PVP) on osthole (OST) crystallization and investigate the impact of polymer concentration and viscosity on crystallization behavior. Also, UV spectrophotometry method was used to determine the drug concentration at different time point to draw the OST concentration-time curve. Results show that HPMC has the most significant inhibition effect on OST crystallization, and drug concentration level is 1.61 times higher than that in control solution within 8 h followed by PVP (1.54) and MC (1.45) respectively. The kinetics of OST recrystallization can be described using first-order reaction, and the crystallization rate constants obtained by analyzing the regression equation indicate that HPMC-60SH-4000 and HPMC-60SH-10000 can greatly influence OST crystal formation. The dissolution rate of drugs precipitated from water-soluble polymer solutions is faster compared with controls in pH 1.2 HCl and pH 6.8 phosphate buffers, which demonstrated that water-soluble polymers can not only change the behavior of drug crystallization but markedly improve the dissolution rate of water insoluble drugs.

Download full-text PDF

Source

Publication Analysis

Top Keywords

water-soluble polymers
8
ost crystallization
8
drug concentration
8
dissolution rate
8
ost
5
crystallization
5
[effect water-soluble
4
polymers inhibition
4
inhibition osthole
4
osthole crystallization]
4

Similar Publications

Degradable Theranostic Polyurethane for Macrophage-Targeted Antileishmanial Drug Delivery.

Biomacromolecules

January 2025

Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India.

The present investigation aims to develop a reactive oxygen species (ROS) and esterase-responsive biodegradable mannosylated polyurethane to effectively deliver the encapsulated antileishmanial drug amphotericin B (AmB) selectively to infected macrophage cells. Owing to suitable amphiphilic balance, the as-synthesized glycosylated polyurethane () with aryl boronic ester-based diol () moiety as ROS-trigger, water-soluble mannose pendants, and fluorescent 4,4-difluoro-4-bora-3a,4a-diaza--indacene (BODIPY) chain ends for bioimaging formed nanoaggregates in an aqueous medium as confirmed by H NMR spectroscopy, dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and critical aggregation concentration (CAC) measurements. Aided by two endogenous stimuli present in phagolysosome, ROS and esterase, AmB-encapsulated polymeric nanoaggregates as drug delivery vehicles achieved an efficient reduction of both and intracellular amastigote burden compared to the free AmB.

View Article and Find Full Text PDF

The effect of PEO/NaCl dual porogens in the fabrication of porous PCL membranes via a solid-state blending approach.

Sci Rep

January 2025

Industrial Engineering Department, School of Applied Technical Sciences, German Jordanian University, Amman, 11180, Jordan.

In this investigation, the influence of a combination of poly(ethylene-oxide) (PEO) and salt (NaCl) as water-soluble porogens on the synthesis of sustainable porous poly(ε-caprolactone) (PCL) membranes is explored. Nine mixture compositions are examined. PCL sheets are fabricated through the cryomilling, hot pressing, and porogen leaching approach.

View Article and Find Full Text PDF

Alginate/gelatin blend fibers for functional high-performance air filtration applications.

Int J Biol Macromol

December 2024

Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey. Electronic address:

Currently, the primary composition of fibrous filter materials predominantly relies on synthetic polymers derived from petroleum. The utilization of these polymers, as well as their production process, has a negative impact on the environment. Consequently, the adoption of air filter media fabricated from natural fibers would yield significant environmental benefits.

View Article and Find Full Text PDF

A ratiometric fluorescence and visual sensor based on conjugated polymer nanoparticles@MnO probe for organophosphorus pesticides detection.

Talanta

December 2024

Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, Hebei, PR China. Electronic address:

Organophosphorus (OPs) pesticide residues pose significant threats to human health and the environment. To tackle this issue, we synthesized water-soluble fluorescent conjugated polymer nanoparticles (WSCPNs), which offer high fluorescence intensity, simple preparation methods, and ease of functionalization, making them ideal candidates for fluorescent sensing applications. These WSCPNs were subsequently used to prepare a WSCPNs@MnO probe via in situ synthesis, resulting in efficient fluorescence resonance energy transfer between WSCPNs and MnO₂.

View Article and Find Full Text PDF

Polysaccharides from L. were investigated for their structural characterization and anti-inflammatory activity. Four low polymer dispersity index (PDI) subfractions were obtained: DRP-1 (153.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!