Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This review presents the state of the art of pH-responsive polymeric micelles for cancer drug delivery. Solid tumors have a weakly acidic extracellular pH (pH < 7), and cancer cells have even more acidic pH in endosomes and lysosomes (pH 4-6). The pH-gradients in tumor can be explored for tumor targeting and drug release in cancer drug delivery by applying pH-responsive polymeric micelles. The pH-responsive polymeric micelles consist of a corona and a core, and are made of amphiphilic copolymers, in which there are pH-responsive polymeric blocks. Two types of pH-responsive polymers-protonizable polymers and acid-labile polymers have been mainly used to make pH-responsive micelles for drug delivery. The protonizable polymers are polybases or polyacids, and their water-soluble/insoluble or charge states undergo changes with the protonation or deprotonation stimulated by external acidity, while the acid-labile polymers change their physical properties by chemical reaction stimulated by the acidity. Polymeric micelles whose core or coronas respond to the tumor extracellular acidity can be explored for triggering the fast release of the carried drug, activating the targeting group and accelerating the endocytosis of drug-loaded polymeric micelles, and those whose core or coronas respond to the tumor lysosomal acidity can be used for facilitating their escape from the lysosomes and targeting the nucleus. Various in vivo and in vitro experiments demonstrated that pH-responsive polymeric micelles are effective for cellular targeting, internalization, fast drug release and nuclear localization, and hence enhancing the therapeutic efficacy and reducing the side effect of cancer chemical therapy.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!