Somatic mutations and germline sequence variants in patients with familial colorectal cancer.

Int J Cancer

Department of Medical Genetics, Genome-Scale Biology Research Program, Biomedicum Helsinki, University of Helsinki, Finland.

Published: December 2010

It is estimated that up to 35% of colorectal cancers (CRC) can be explained by hereditary factors. However, genes predisposing to highly penetrant CRC syndromes account for only a small fraction of all cases. Thus, most CRCs still remain molecularly unexplained. A recent systematic sequencing study on well-annotated human protein coding genes identified 280 somatically mutated candidate cancer genes (CAN genes) in breast and colorectal cancer. It is estimated that 8% of all reported cancer genes show both somatic and germline mutations. Therefore, the identified CAN genes serve as a distinct set of candidates for being involved in hereditary susceptibility. The aim of this study was to evaluate the role of colorectal CAN genes in familial CRC. Samples from 45 familial CRCs without known cancer predisposing mutations were screened for somatic and germline variants in 15 top-ranked CAN genes. Six of the genes were found to be somatically mutated in our tumor series. We identified 22 nonsynonymous somatic mutations of which the majority was of missense type. In germline, three novel nonsynonymous variants were identified in the following genes: CSMD3, EPHB6 and C10orf137, and none of the variants were present in 890 population-matched healthy controls. It is possible that the identified germline variants modulate predisposition to CRC. Functional validation and larger sample sets, however, will be required to clarify the role of the identified germline variants in CRC susceptibility.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.25529DOI Listing

Publication Analysis

Top Keywords

germline variants
12
genes
10
somatic mutations
8
colorectal cancer
8
cancer estimated
8
somatically mutated
8
cancer genes
8
genes genes
8
somatic germline
8
identified genes
8

Similar Publications

Familial Platelet Disorder with associated Myeloid Malignancy (FPDMM, FPD/AML, -FPD), caused by monoallelic deleterious germline variants, is characterized by bleeding diathesis and predisposition for hematologic malignancies, particularly myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Clinical data on FPDMM-associated AML (FPDMM-AML) are limited, complicating evidence-based clinical decision-making. Here, we present retrospective genetic and clinical data of the largest cohort of FPDMM patients reported to date.

View Article and Find Full Text PDF

Germline structural variant as the cause of Lynch Syndrome in a family from Ecuador.

NPJ Genom Med

January 2025

Gastroenterology Deparment, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain.

Colorectal cancer (CRC) is one of the most common cancers worldwide. Lynch Syndrome (LS) is the most common form of hereditary CRC and it is caused by germline defects in the DNA-mismatch repair (MMR) pathway. It is of extreme importance for affected LS patients and their relatives to identify the germline causative alteration to provide intensified surveillance to those at risk and allow early diagnosis and cancer prevention.

View Article and Find Full Text PDF

Background: Li-Fraumeni syndrome (LFS) is an autosomal dominant tumor predisposition syndrome characterized by a high familial incidence of various malignancies. It results from pathogenic/likely pathogenic heterozygous constitutional variants of the TP53 gene. Due to impaired DNA damage repair, conventional cytotoxic therapies or radiotherapy should be avoided whenever feasible to mitigate the high incidence of treatment-related secondary malignancies in these patients.

View Article and Find Full Text PDF

VEXAS syndrome is a complex hemato-inflammatory disorder, driven by somatic mutations in the UBA1 gene within hematopoietic precursor cells. It is characterized by systemic inflammation, rheumatological manifestations, and frequent association with myelodysplastic syndrome (MDS). We present a series of four VEXAS cases, all of which include concomitant MDS, each displaying distinct genetic signatures and clinical features at diagnosis, with a focus on their diagnostic and therapeutic implications.

View Article and Find Full Text PDF

Purpose: Cardiac angiosarcoma (CAS) is a rare, aggressive malignancy with limited treatment options. Both sporadic and familial cases occur, with recent links to germline POT1 mutations. The genomic landscape of this disease is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!