Cambrian fossil Lagerstätten preserving soft-bodied organisms have contributed much towards our understanding of metazoan origins. Lobopodians are a particularly interesting group that diversified and flourished in the Cambrian seas. Resembling 'worms with legs', they have long attracted much attention in that they may have given rise to both Onychophora (velvet worms) and Tardigrada (water bears), as well as to arthropods in general. Here we describe Diania cactiformis gen. et sp. nov. as an 'armoured' lobopodian from the Chengjiang fossil Lagerstätte (Cambrian Stage 3), Yunnan, southwestern China. Although sharing features with other typical lobopodians, it is remarkable for possessing robust and probably sclerotized appendages, with what appear to be articulated elements. In terms of limb morphology it is therefore closer to the arthropod condition, to our knowledge, than any lobopodian recorded until now. Phylogenetic analysis recovers it in a derived position, close to Arthropoda; thus, it seems to belong to a grade of organization close to the point of becoming a true arthropod. Further, D. cactiformis could imply that arthropodization (sclerotization of the limbs) preceded arthrodization (sclerotization of the body). Comparing our fossils with other lobopodian appendage morphologies--see Kerygmachela, Jianshanopodia and Megadictyon--reinforces the hypothesis that the group as a whole is paraphyletic, with different taxa expressing different grades of arthropodization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature09704 | DOI Listing |
Commun Biol
July 2024
Yuxi Museum, 653100, Yuxi, China.
Lobopodians represent a key step in the early history of ecdysozoans since they were the first animals to evolve legs within this clade. Their Cambrian representatives share a similar body plan with a typically cylindrical annulated trunk and a series of non-jointed legs. However, they do not form a monophyletic group and likely include ancestors of the three extant panarthropod lineages (Tardigrada, Onychophora, Euarthropoda).
View Article and Find Full Text PDFNat Ecol Evol
April 2024
Université de Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, CNRS, UMR5276, LGL-TPE, Villeurbanne, France.
Early Palaeozoic sites with soft-tissue preservation are predominantly found in Cambrian rocks and tend to capture past tropical and temperate ecosystems. In this study, we describe the diversity and preservation of the Cabrières Biota, a newly discovered Early Ordovician Lagerstätte from Montagne Noire, southern France. The Cabrières Biota showcases a diverse polar assemblage of both biomineralized and soft-bodied organisms predominantly preserved in iron oxides.
View Article and Find Full Text PDFCurr Biol
November 2022
Yunnan Key Laboratory for Palaeobiology & MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming 650500, China. Electronic address:
Nature
September 2022
Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
The early history of deuterostomes, the group composed of the chordates, echinoderms and hemichordates, is still controversial, not least because of a paucity of stem representatives of these clades. The early Cambrian microscopic animal Saccorhytus coronarius was interpreted as an early deuterostome on the basis of purported pharyngeal openings, providing evidence for a meiofaunal ancestry and an explanation for the temporal mismatch between palaeontological and molecular clock timescales of animal evolution. Here we report new material of S.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2019
GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark.
The proliferation of large, motile animals 540 to 520 Ma has been linked to both rising and declining O levels on Earth. To explore this conundrum, we reconstruct the global extent of seafloor oxygenation at approximately submillion-year resolution based on uranium isotope compositions of 187 marine carbonates samples from China, Siberia, and Morocco, and simulate O levels in the atmosphere and surface oceans using a mass balance model constrained by carbon, sulfur, and strontium isotopes in the same sedimentary successions. Our results point to a dynamically viable and highly variable state of atmosphere-ocean oxygenation with 2 massive expansions of seafloor anoxia in the aftermath of a prolonged interval of declining atmospheric pO levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!