Rationale: The nuclear factor (NF)-κB pathway is involved in arterial inflammation. Although the signaling pathways that regulate transcriptional activation of NF-κB are defined, the mechanisms that regulate the expression levels of NF-κB transcription factors are uncertain.

Objective: We studied the signaling mechanisms that regulate RelA NF-κB subunit expression in endothelial cells (ECs) and their role in arterial inflammation.

Methods And Results: Gene silencing and chromatin immunoprecipitation revealed that RelA expression was positively regulated by c-Jun N-terminal kinase (JNK) and the downstream transcription factor ATF2 in ECs. We concluded that this pathway promotes focal arterial inflammation as genetic deletion of JNK1 reduced NF-κB expression and macrophage accumulation at an atherosusceptible site. We hypothesized that JNK signaling to NF-κB may be controlled by mechanical forces because atherosusceptibility is associated with exposure to disturbed blood flow. This was assessed by positron emission tomography imaging of carotid arteries modified with a constrictive cuff, a method that was developed to study the effects of disturbed flow on vascular physiology in vivo. This approach coupled to en face staining revealed that disturbed flow elevates NF-κB expression and inflammation in murine carotid arteries via JNK1.

Conclusions: We demonstrate that disturbed blood flow promotes arterial inflammation by inducing NF-κB expression in endothelial cells via JNK-ATF2 signaling. Thus, our findings illuminate a novel form of JNK-NF-κB crosstalk that may determine the focal nature of arterial inflammation and atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.110.233841DOI Listing

Publication Analysis

Top Keywords

arterial inflammation
20
disturbed blood
12
blood flow
12
nf-κb expression
12
nf-κb
9
rela expression
8
c-jun n-terminal
8
n-terminal kinase
8
promotes arterial
8
mechanisms regulate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!