Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer's disease.

Mol Pharmacol

Neurodegeneration Group, Department of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, Madrid, Spain.

Published: June 2011

Microglial activation is an invariant feature of Alzheimer's disease (AD). It is noteworthy that cannabinoids are neuroprotective by preventing β-amyloid (Aβ)-induced microglial activation both in vitro and in vivo. On the other hand, the phytocannabinoid cannabidiol (CBD) has shown anti-inflammatory properties in different paradigms. In the present study, we compared the effects of CBD with those of other cannabinoids on microglial cell functions in vitro and on learning behavior and cytokine expression after Aβ intraventricular administration to mice. CBD, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo-[1,2,3-d,e]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone [WIN 55,212-2 (WIN)], a mixed CB(1)/CB(2) agonist, and 1,1-dimethylbutyl-1-deoxy-Δ(9)-tetrahydrocannabinol [JWH-133 (JWH)], a CB(2)-selective agonist, concentration-dependently decreased ATP-induced (400 μM) increase in intracellular calcium ([Ca(2+)](i)) in cultured N13 microglial cells and in rat primary microglia. In contrast, 4-[4-(1,1-dimethylheptyl)-2,6-dimethoxyphenyl]-6,6-dimethyl-bicyclo[3.1.1]hept-2-ene-2-methanol [HU-308 (HU)], another CB(2) agonist, was without effect. Cannabinoid and adenosine A(2A) receptors may be involved in the CBD action. CBD- and WIN-promoted primary microglia migration was blocked by CB(1) and/or CB(2) antagonists. JWH and HU-induced migration was blocked by a CB(2) antagonist only. All of the cannabinoids decreased lipopolysaccharide-induced nitrite generation, which was insensitive to cannabinoid antagonism. Finally, both CBD and WIN, after subchronic administration for 3 weeks, were able to prevent learning of a spatial navigation task and cytokine gene expression in β-amyloid-injected mice. In summary, CBD is able to modulate microglial cell function in vitro and induce beneficial effects in an in vivo model of AD. Given that CBD lacks psychoactivity, it may represent a novel therapeutic approach for this neurological disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102548PMC
http://dx.doi.org/10.1124/mol.111.071290DOI Listing

Publication Analysis

Top Keywords

microglial activation
12
activation vitro
8
vitro vivo
8
alzheimer's disease
8
microglial cell
8
primary microglia
8
migration blocked
8
cbd
7
microglial
6
cannabidiol cannabinoids
4

Similar Publications

Major Depressive Disorder (MDD) is a common and severe neuropsychiatric condition resulting in irregular alterations in affect, mood, and cognition. Besides the well-studied neurotransmission-related etiologies of MDD, several biological systems and phenomena, such as the hypothalamic-pituitary-adrenal (HPA) axis, reactive oxygen species (ROS) production, and cytokine signaling, have been implicated as being altered and contributing to depressive symptoms. However, the manner in which these factors interact with each other to induce their effects on MDD development has been less clear, but is beginning to be understood.

View Article and Find Full Text PDF

Oxidized regenerated cellulose (ORC; marketed as Surgicel® and Tabotamp®) is routinely used as an intraoperative hemostatic agent. Rarely, residual ORC has been associated with a foreign body reaction generating cystic or granulomatous lesions (i.e.

View Article and Find Full Text PDF

Microglia respond to cytotoxic protein aggregates associated with the progression of neurodegenerative disease. Pathological protein aggregates activate the microglial NLRP3 inflammasome resulting in proinflammatory signaling, secretion, and potentially pyroptotic cell death. We characterized mixed sex primary mouse microglia exposed to microbial stressors and alpha synuclein preformed fibrils (αsyn PFFs) to identify cellular mechanisms related to Parkinson's disease.

View Article and Find Full Text PDF

The role of CXCL12/CXCR4/CXCR7 axis in cognitive impairment associated with neurodegenerative diseases.

Brain Behav Immun Health

February 2025

Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran.

Neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS), are characterized by progressive neuronal loss and cognitive impairment (CI). The: Cysteine-X-cysteine chemokine ligand 12(CXCL12)/CXC chemokine receptor type 4 (CXCR4)/CXC chemokine receptor type 7 (CXCR7) axis has emerged as a critical molecular pathway in the development of CI in these disorders. This review explores the role of this axis in the pathogenesis of CI across these neurodegenerative diseases, synthesizing current evidence and its implications for targeted therapies.

View Article and Find Full Text PDF

Microglial double stranded DNA accumulation induced by DNase II deficiency drives neuroinflammation and neurodegeneration.

J Neuroinflammation

January 2025

State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.

Background: Deoxyribonuclease 2 (DNase II) is pivotal in the clearance of cytoplasmic double stranded DNA (dsDNA). Its deficiency incurs DNA accumulation in cytoplasm, which is a hallmark of multiple neurodegenerative diseases. Our previous study showed that neuronal DNase II deficiency drove tau hyperphosphorylation and neurodegeneration (Li et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!