The potential of near infrared spectroscopy in conjunction with partial least squares regression to predict Miscanthus xgiganteus and short rotation coppice willow quality indices was examined. Moisture, calorific value, ash and carbon content were predicted with a root mean square error of cross validation of 0.90% (R(2) = 0.99), 0.13 MJ/kg (R(2) = 0.99), 0.42% (R(2) = 0.58), and 0.57% (R(2) = 0.88), respectively. The moisture and calorific value prediction models had excellent accuracy while the carbon and ash models were fair and poor, respectively. The results indicate that near infrared spectroscopy has the potential to predict quality indices of dedicated energy crops, however the models must be further validated on a wider range of samples prior to implementation. The utilization of such models would assist in the optimal use of the feedstock based on its biomass properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2011.01.087 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!