One of the most interesting methods for preparing molecularly imprinted polymers with controlled morphology consists in filling the pores of silica beads with an imprinting mixture, polymerizing it and dissolving the support, leaving porous imprinted beads that are the "negative image" of the silica beads. The main advantage of such an approach consists in the easy preparation of spherical imprinted polymeric particles with narrow diameter and pore size distribution, particularly indicated for chromatographic applications. In this approach it has been shown that the resulting morphology of polymeric beads depends essentially on the porosity and surface properties of the silica beads that act as microreactors for the thermopolymerization process. Anyway, it is not yet clear if the porosity of the silica beads influences the binding properties of the resulting imprinted beads. In this paper, we report the effect of different porosities of the starting mesoporous silica beads on the resulting binding properties of imprinted polymers with molecular recognition properties towards the fungicide carbendazim. The morphological properties of the imprinted beads prepared through this hierarchical approach were measured by nitrogen adsorption porosimetry and compared with a reference imprinted material prepared by bulk polymerization. The chromatographic behaviour of HPLC columns packed with the imprinted materials were examined by eluting increasing amounts of carbendazim and extracting the binding parameters through a peak profiling approach. The experimental results obtained show that the resulting binding properties of the imprinted beads are strongly affected by the polymerization approach used but not by the initial porosity of the silica beads, with the sole exception of the binding site density, which appears to be inversely proportional to them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2011.02.003 | DOI Listing |
Small
January 2025
Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
In this study, we present an ultrasensitive and specific multiplexed detection method for SARS-CoV-2 and influenza (Flu) utilizing CRISPR/Cas13a technology combined with a hydrogel-encapsulated photonic crystal (PhC) barcode integrated with hybridization chain reaction (HCR). The barcodes, characterized by core-shell structures, are fabricated through partial replication of periodically ordered hexagonally close-packed silicon dioxide beads. Consequently, the opal hydrogel shell of these barcodes features abundant interconnected pores that provide a substantial surface area for probe immobilization.
View Article and Find Full Text PDFMolecules
December 2024
Department of Engineering and Machinery for Food Industry, University of Agriculture in Krakow, Balicka Street 122, 30-149 Cracow, Poland.
Oleogels (organogels) are systems resembling a solid substance based on the gelation of organic solvents (oil or non-polar liquid) through components of low molecular weight or oil-soluble polymers. Such compounds are organogelators that produce a thermoreversible three-dimensional gel network that captures liquid organic solvents. Oleogels based on natural oils are attracting more attention due to their numerous advantages, such as their unsaturated fatty acid contents, ease of preparation, and safety of use.
View Article and Find Full Text PDFFoods
December 2024
Food Hygiene, Inspection and Control Laboratory (LHICA-USC), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Science, Campus Terra, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain.
spp. is one of the most important foodborne pathogens worldwide. Given the fact that poultry and poultry products are the main source of human infection, Salmonella control in these farms is of utmost importance.
View Article and Find Full Text PDFLab Chip
January 2025
School of Biomedical Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
Rapid and accurate molecular diagnostics are crucial for preventing the global spread of emerging infectious diseases. However, the current gold standard for nucleic acid detection, reverse transcription polymerase chain reaction (RT-PCR), relies heavily on traditional magnetic beads or silica membranes for nucleic acid extraction, resulting in several limitations, including time-consuming processes, the need for trained personnel, and complex equipment. Therefore, there is an urgent need for fully integrated nucleic acid detection technologies that are simple to operate, rapid, and highly sensitive to meet unmet clinical needs.
View Article and Find Full Text PDFFEBS Lett
January 2025
Department of Medical Cell Biophysics, TechMed Center, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!