Intracellular immune responses of dipteran insects.

Immunol Rev

CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.

Published: March 2011

Vector-borne diseases, transmitted by bloodsucking arthropods, pose worldwide socio-medical and economical problems. Some of the major human infectious diseases, such as malaria, Dengue fever, and yellow fever, are transmitted by mosquitoes. While the majority of pathogens enjoy extracellular life styles in insects, viruses and some endosymbionts are strictly intracellular. Here, we summarize our knowledge on defense reactions against intracellular microorganisms in dipteran insects and discuss the potential of insects as models to study human pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-065X.2010.00985.xDOI Listing

Publication Analysis

Top Keywords

dipteran insects
8
intracellular immune
4
immune responses
4
responses dipteran
4
insects
4
insects vector-borne
4
vector-borne diseases
4
diseases transmitted
4
transmitted bloodsucking
4
bloodsucking arthropods
4

Similar Publications

The Effects of Disturbance on Plant-Pollinator Interactions in the Native Forests of an Oceanic Island (Terceira, Azores).

Insects

December 2024

LIBRe-Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History, University of Helsinki, 00100 Helsinki, Finland.

The native biodiversity of oceanic islands is threatened by human-driven disturbance and by the growing number of species introductions which often interfere with natural ecological processes. Here, we aim to evaluate the effect of anthropogenic disturbance on plant-pollinator interactions in the native forest communities of an oceanic island (Terceira, Azores, Portugal). We found that native species predominated in preserved sites compared to disturbed ones and that the extant plant-pollinator interactions were mostly dominated by generalist species.

View Article and Find Full Text PDF

Molecular Phylogenetics and Estimation of Evolutionary Divergence and Biogeography of the Family Cordycipitaceae (Ascomycota, Hypocreales).

J Fungi (Basel)

January 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

The Cordycipitaceae family of insecticidal fungi is widely distributed in nature, is the most complex in the order Hypocreales (Ascomycota), with members displaying a diversity of morphological characteristics and insect host ranges. Based on Bayesian evolutionary analysis of five genomic loci(the small subunit of ribosomal RNA (SSU) gene, the large subunit of ribosomal RNA (LSU) gene, the translation elongation factor 1-α () gene, the largest subunit of RNA polymerase II (), and the second largest subunit of RNA polymerase II (), we inferred the divergence times for members of the Cordycipitaceae, improving the internal phylogeny of this fungal family. Molecular clock analyses indicate that the ancestor of occurred in the Paleogene period (34.

View Article and Find Full Text PDF

How consumer diversity determines consumption efficiency is a central issue in ecology. In the context of predation and biological control, this relationship concerns predator diversity and predation efficiency. Reduced predation efficiency can result from different predator taxa eating each other in addition to their common prey (interference due to intraguild predation).

View Article and Find Full Text PDF

Viruses transmitted by arthropods pose a huge risk to human health. Wolbachia is an endosymbiotic bacterium that infects various arthropods and can block the viral replication cycle of several medically important viruses. As such, it has been successfully implemented in vector control strategies against mosquito-borne diseases, including Dengue virus.

View Article and Find Full Text PDF

The mosquito evolves two types of prophenoloxidases with diversified functions.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan 570228, China.

Insect phenoloxidase, presented as an inactive precursor prophenoloxidase (PPO) in hemolymph, catalyzes melanin formation, which is involved in wound healing, pathogen killing, reversible oxygen collection during insect respiration, and cuticle and eggshell formation. Mosquitoes possess 9 to 16 PPO members across different genera, a number that is more than that found in other dipteran insects. However, the reasons for the redundancy of these PPOs and whether they have distinct biochemical properties and physiological functions remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!