AI Article Synopsis

  • A new liposomal drug-delivery system has been created by modifying liposomes with a polymer called Rh123-PEG-DOPE, which helps target mitochondria.
  • The modified liposomes showed improved cellular uptake and strong accumulation in mitochondria, as confirmed by fluorescence microscopy and other analyses.
  • Mitochondrial-targeted liposomes loaded with the cancer drug paclitaxel (PCL) were more effective at killing cancer cells compared to non-targeted versions, demonstrating the potential of this system for targeted therapies.

Article Abstract

A novel mitochondrial-targeted liposomal drug-delivery system was prepared by modification of the liposomal surface with a newly synthesized polymer, rhodamine-123 (Rh123)-PEG-DOPE inserted into the liposomal lipid bilayer. This novel polymer was synthesized by conjugating the mitochondriotropic dye Rh123, with the amphiphilic polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugate. The modified liposomes showed better uptake by cells (HeLa, B16F10) estimated by fluorescence microscopy and FACS analysis. The co-localization study with stained mitochondria as well as with the isolation of mitochondria of the cultured cells after their treatment with Rh123 liposomes showed a high degree of accumulation of the modified liposomes in the mitochondria. We also prepared mitochondrial-targeted and nontargeted paclitaxel (PCL)-loaded liposomes. Mitochondrial-targeted PCL-loaded liposomes demonstrated enhanced cytotoxicity toward cancer cells compared with nontargeted drug-loaded liposomes or free PCL. Thus, Rh123-modified liposomes target mitochondria efficiently and can facilitate the delivery of a therapeutic payload to mitochondria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492939PMC
http://dx.doi.org/10.3109/1061186X.2010.536983DOI Listing

Publication Analysis

Top Keywords

liposomes
8
modified liposomes
8
pcl-loaded liposomes
8
mitochondria
5
surface modification
4
modification liposomes
4
liposomes rhodamine-123-conjugated
4
rhodamine-123-conjugated polymer
4
polymer enhanced
4
enhanced mitochondrial
4

Similar Publications

Alveolar echinococcosis (AE) is a serious parasitic infectious disease that is highly invasive and destructive to the liver and has a high mortality rate. However, currently, there is no effective targeted imaging and treatment method for the precise detection and therapy of AE. We proposed a new two-step targeting strategy (TSTS) for AE based on poly(lactic--glycolic acid) (PLGA).

View Article and Find Full Text PDF

Cutaneous leishmaniasis (CL) is a tropical disease that can cause chronic lesions and leave life-long scars, leading to social stigmatization and psychological disorders. Using growth factors and immunomodulatory agents that could accelerate wound healing and reduce the scar is highly demanded. Epidermal growth factor (EGF) plays an essential role in wound healing.

View Article and Find Full Text PDF

Dual alarmin-receptor-specific targeting peptide systems for treatment of sepsis.

Acta Pharm Sin B

December 2024

Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea.

The pathophysiology of sepsis is characterized by a systemic inflammatory response to infection; however, the cytokine blockade that targets a specific early inflammatory mediator, such as tumor necrosis factor, has shown disappointing results in clinical trials. During sepsis, excessive endotoxins are internalized into the cytoplasm of immune cells, resulting in dysregulated pyroptotic cell death, which induces the leakage of late mediator alarmins such as HMGB1 and PTX3. As late mediators of lethal sepsis, overwhelming amounts of alarmins bind to high-affinity TLR4/MD2 and low-affinity RAGE receptors, thereby amplifying inflammation during early-stage sepsis.

View Article and Find Full Text PDF

β-Carotene (βC), a natural carotenoid, is the most important and effective vitamin A precursor, known also for its antioxidant properties. However, its poor water solubility, chemical instability, and low bioavailability limit its effectiveness as an orally delivered functional nutrient. Nanoparticle encapsulation improves βC's bioaccessibility by enhancing its stability and solubility.

View Article and Find Full Text PDF

Organelle-Targeting Nanoparticles.

Adv Sci (Weinh)

January 2025

Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA.

Organelles are specialized subunits within cells which carry out vital functions crucial to cellular survival and form a tightly regulated network. Dysfunctions in any of these organelles are linked to numerous diseases impacting virtually every organ system in the human body. Targeted delivery of therapeutics to specific organelles within the cell holds great promise for overcoming challenging diseases and improving treatment outcomes through the minimization of therapeutic dosage and off-target effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!