High altitude (HA) generates a deleterious effect known as hypobaric hypoxia (HBH). This causes severe physiological and psychological changes such as acute mountain sickness (AMS) and cognitive functions in terms of learning and memory. The present study has evaluated the effect of cholinesterase inhibitors on memory consolidation following HBH. Adult male Sprague Dawley rats (80-90 days old) with an average body weight of 250 ± 25 g were used. Rats were assessed memory consolidation by using Morris water maze (MWM) for 8 days. After assessment of memory consolidation, rats were then exposed to HBH in stimulated chamber for 7 days at 6,100 m. After exposure to HBH, the memory consolidation of rats has been assessed in MWM. The results showed that there was memory consolidation impairment in HBH-exposed rats as compared to normoxic rats in terms of time spent in quaradents, rings, and counters. The rats which have been treated with physostigmine (PHY) and galantamine (GAL) showed better time spent in quaradents, rings, and counters as compared with hypoxic rats. In conclusion, the cholinesterase inhibitors could ameliorate the impairment of memory consolidation following HBH.

Download full-text PDF

Source
http://dx.doi.org/10.3109/00207454.2011.556279DOI Listing

Publication Analysis

Top Keywords

memory consolidation
28
cholinesterase inhibitors
12
rats
9
memory
8
inhibitors memory
8
hypobaric hypoxia
8
consolidation hbh
8
rats assessed
8
consolidation rats
8
time spent
8

Similar Publications

Background: Sleep is an active process that affects human health and quality of life. Sleep is essential for learning and memory consolidation. Good sleep is required for good academic performance.

View Article and Find Full Text PDF

The immune-inflammatory responses on the hypothalamic-pituitary-adrenal axis and the neurovascular unit in perioperative neurocognitive disorder.

Exp Neurol

January 2025

Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:

Perioperative neurocognitive disorders (PNDs) refer to a wide spectrum of cognitive impairment persisting days to even after a year postoperative with significant morbidity and mortality. However, despite much efforts involving perioperative managements, PNDs are still prevalent with no standard preventative and therapeutic strategy. To overcome PNDs, a better understanding of pathophysiology of PNDs is crucial and a large number of studies have proven that immune-inflammatory responses from surgical stress are involved in the abnormal activation of the hypothalamic-pituitary-adrenal (HPA) axis and destabilization of neurovascular unit (NVU) that lead to PNDs.

View Article and Find Full Text PDF

Background And Objectives: Rolandic epilepsy (RE), the most common childhood focal epilepsy syndrome, is characterized by a transient period of sleep-activated epileptiform activity in the centrotemporal regions and variable cognitive deficits. Sleep spindles are prominent thalamocortical brain oscillations during sleep that have been mechanistically linked to sleep-dependent memory consolidation in animal models and healthy controls. Sleep spindles are decreased in RE and related sleep-activated epileptic encephalopathies.

View Article and Find Full Text PDF

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

Emotional stress increases GluA2 expression and potentiates fear memory via adenylyl cyclase 5.

Cell Rep

January 2025

Department of Cell Biology and Anatomy, LSUHSC, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA. Electronic address:

Stress can alter behavior and contributes to psychiatric disorders by regulating the expression of the GluA2 AMPA receptor subunit. We have previously shown in mice that exposure to predator odor stress elevates GluA2 transcription in cerebellar molecular layer interneurons (MLIs), and MLI activity is required for fear memory consolidation. Here, we identified the critical involvement of adenylyl cyclase 5, in both the stress-induced increase in GluA2 in MLIs and the enhancement of fear memory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!