DNA mismatch repair (MMR) plays a role in promoting genetic stability by repairing DNA replication errors, inhibiting recombination between nonidentical DNA sequences, and participating in responses to DNA damage. Although the role of MMR in prostate carcinogenesis remains unclear, MMR deficiency in Carcinoma Prostate (Pca) could prove to be clinically significant. Thus, the present study investigated the gene expression profile of six major MMR genes, viz. hMLH1, hMSH2, hPMS1, hPMS2, hMSH3, and hMSH6, and polymorphism in hMLH1 and hMSH2 in Pca in Indian population. Further, correlation with clinicopathological parameters was evaluated to establish their role as a potential prognostic marker. A significant downregulation of hMLH1, hMSH2, and hPMS2 expression was observed in Pca compared to benign prostatic hyperplasia (BPH). A greater loss of hPMS2 protein in poorly differentiated tumors was demonstrated, which was in concordance with a significant inverse correlation of hPMS2 gene expression with the Gleason score indicating its significance as a marker for Pca progression. An important association of hMLH1-93G>A polymorphism with the risk of Pca was also identified. The results of the present study suggest that an altered MMR has important biological and clinical significance in Pca in Indian population.

Download full-text PDF

Source
http://dx.doi.org/10.1089/omi.2010.0110DOI Listing

Publication Analysis

Top Keywords

gene expression
12
indian population
12
hmlh1 hmsh2
12
expression profile
8
dna mismatch
8
mismatch repair
8
carcinoma prostate
8
pca indian
8
pca
6
dna
5

Similar Publications

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!