Autosomal recessive juvenile parkinsonism (ARJP) is an early onset familial form of Parkinson's disease. Approximately 50% of all ARJP cases are attributed to mutations in the gene park2, coding for the protein parkin. Parkin is a multidomain E3 ubiquitin ligase with six distinct domains including an N-terminal ubiquitin-like (Ubl) domain. In this work we examined the structure, stability, and interactions of the parkin Ubl domain containing most ARJP causative mutations. Using NMR spectroscopy we show that the Ubl domain proteins containing the ARJP substitutions G12R, D18N, K32T, R33Q, P37L, and K48A retained a similar three-dimensional fold as the Ubl domain, while at least one other (V15M) had altered packing. Four substitutions (A31D, R42P, A46P, and V56E) result in poor folding of the domain, while one protein (T55I) showed evidence of heterogeneity and aggregation. Further, of the substitutions that maintained their three-dimensional fold, we found that four of these (V15M, K32T, R33Q, and P37L) lead to impaired function due to decreased ability to interact with the 19S regulatory subunit S5a. Three substitutions (G12R, D18N, and Q34R) with an uncertain role in the disease did not alter the three-dimensional fold or S5a interaction. This work provides the first extensive characterization of the structural effects of causative mutations within the ubiquitin-like domain in ARJP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065874 | PMC |
http://dx.doi.org/10.1021/bi200065g | DOI Listing |
Exp Mol Med
January 2025
Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied.
View Article and Find Full Text PDFAutophagy
January 2025
Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden.
Viral proteases play critical roles in the host cell and immune remodeling that allows virus production. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) papain-like protease (PLpro) encoded in the large nonstructural protein 3 (Nsp3) also possesses isopeptidase activity with specificity for ubiquitin and ISG15 conjugates. Here, we interrogated the cellular interactome of the SARS-CoV-2 PLpro catalytic domain to gain insight into the putative substrates and cellular functions affected by the viral deubiquitinase.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa7a, 30-387 Krakow, Poland.
Ubiquitin-related modifier 1 (Urm1) is a highly conserved member of the ubiquitin-like (UBL) family of proteins. Urm1 is a key component of the eukaryotic transfer RNA (tRNA) thiolation cascade, responsible for introducing sulfur at wobble uridine (U34) in several eukaryotic tRNAs. Urm1 must be thiocarboxylated (Urm1-SH) by its E1 activating enzyme UBL protein activator 4 (Uba4).
View Article and Find Full Text PDFBiomolecules
October 2024
Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA.
Mutations in the parkin gene product Parkin give rise to autosomal recessive juvenile parkinsonism. Parkin is an E3 ubiquitin ligase that is a critical participant in the process of mitophagy. Parkin has a complex structure that integrates several allosteric signals to maintain precise control of its catalytic activity.
View Article and Find Full Text PDFStructure
November 2024
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India. Electronic address:
PINK1 and Parkin mutations lead to the early onset of Parkinson's disease. PINK1-mediated phosphorylation of ubiquitin (Ub), ubiquitin-like protein (NEDD8), and ubiquitin-like (Ubl) domain of Parkin activate autoinhibited Parkin E3 ligase. The mechanism of various phospho-Ubls' specificity and conformational changes leading to Parkin activation remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!