Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Anti-cancer drug bleomycin (BLM) can cause acute lung injury (ALI) which often results in pulmonary fibrosis due to a failure of resolving acute inflammatory response. The aim of this study is to investigate whether toll-like receptor (TLR) 2 mediates BLM-induced ALI, inflammation and fibrosis. BLM-induced dendritic cells (DCs) maturation was analyzed by flow cytometry and cytokine secretion was detected by the ELISA method. The expression and activity of p38 and ERK MAPK were determined with Western blotting. The roles of TLR2 in ALI, inflammation and fibrosis were investigated in C57BL/6 mice administered intratracheally with BLM. The results demonstrated that BLM-administered mice had higher expression of TLR2 (P<0.001) and its signaling molecules. Blocking TLR2 significantly inhibited the maturation of DCs and reversed BLM-stimulated secretion of cytokines in DCs, such as IL-6 (P<0.001), IL-17 (P<0.05) and IL-23 (P<0.05). TLR2 inhibition attenuated BLM-induced increase of inflammatory cells in bronchoalveolar lavage fluid (BALF), and reversed the immunosuppressive microenvironment by enhancing TH1 response (P<0.05) and inhibiting TH2 (P<0.001), Treg (P<0.01) and TH17 (P<0.01) responses. Importantly, blocking TLR2 in vivo significantly protected BLM-administered mice from pulmonary injury, inflammation and fibrosis and subsequently increased BLM-induced animal survival (from 50% to 92%). Therefore, TLR2 is a novel potential target for ALI and pulmonary fibrosis.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!