The objective of this paper was the investigation of a suitable Sepabeads(®) support and method for immobilization of lipase from Candida rugosa. Three different supports were used, two with amino groups, (Sepabeads(®) EC-EA and Sepabeads(®) EC-HA), differing in spacer length (two and six carbons, respectively) and one with epoxy group (Sepabeads(®) EC-EP). Lipase immobilization was carried out by two conventional methods (via epoxy groups and via glutaraldehyde), and with periodate method for modification of lipase. The results of activity assays showed that lipase retained 94.8% or 87.6% of activity after immobilization via epoxy groups or with periodate method, respectively, while glutaraldehyde method was inferior with only 12.7% of retention. The immobilization of lipase, previously modified by periodate oxidation, via amino groups has proven to be more efficient than direct immobilization of lipase via epoxy groups. In such a way immobilized enzyme exhibited higher activity at high reaction temperatures and higher thermal stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-011-0530-2 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemistry, University of Zanjan, Zanjan, Iran. Electronic address:
The catalytic performance of Candida antarctica lipase B (CALB) immobilized on silica-coated magnetic nanoparticles was evaluated for biodiesel production via methanolysis of rapeseed oil. Two different covalent immobilization approaches were compared to assess the effect of immobilization protocols on lipase efficiency. The first approach involved immobilization of CALB on amine-functionalized magnetic nanoparticles (MNPs), which targeted the Lys-rich regions of the enzyme.
View Article and Find Full Text PDFJ Microsc
January 2025
Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.
Until recently, the lack of three-dimensional visualisation of whole cells at the electron microscopic (EM) level has led to a significant gap in our understanding of the interaction of cellular organelles and their interconnection. This is particularly true with regard to the role of the endoplasmic reticulum (ER). In this study, we perform three-dimensional reconstructions of serial FIB/SEM stacks and anaglyphs derived from volume rendering, cryo-scanning electron microscopy (cryo-SEM) and state-of-the-art electron microscopy immobilisation and imaging techniques.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemical Engineering, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain.
The value of branched esters comes from the special properties they have in cold environments, which allow them to remain liquid over a wide range of temperatures. These properties make them useful for application in the cosmetic industry or as lubricant additives. This paper presents the studies carried out to ascertain the operational feasibility of the enzymatic esterification of 2-methylpentanoic acid (MPA) with 1,10-decanediol (DD), with the objective of obtaining a novel molecule: decane-1,10-diyl bis(2-methylpentanoate) (DDBMP).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, 28049 Madrid, Spain. Electronic address:
Eversa Transform (ETL) was immobilized on octyl agarose beads at two different enzymes loadings (1 mg/g and 15 mg/g) under 18 different conditions, including different pH values, buffers, additives (different solvents, Ca, NaCl). Their activity was analyzed at pH 5 and 7 with p-nitrophenyl butyrate and at pH 5 with triacetin, determining also its stability at pH 5 and 7 (in different media). Ca stabilized ETL biocatalysts while phosphate destabilized them.
View Article and Find Full Text PDFFood Res Int
January 2025
Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China. Electronic address:
A lipophilic piceid lipoate (PIL) was synthesized by enzymatic method to enhance the antioxidant activity of piceid and improve its state in oil system. The highest substrate conversion of 93.71 % was obtained in γ-valerolactone using Novozym 435 as a catalyst, with a piceid/lipoic acid ratio of 1:15 (mM/mM), an enzyme dosage of 40 mg/mL, and 4 Å molecular sieves at 400 mg/mL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!