Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves.

Appl Biochem Biotechnol

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, 210009, People's Republic of China.

Published: August 2011

A comparative evaluation of different cell disruption methods for the release of lipids from marine Chlorella vulgaris cells was investigated. The cell growth of C. vulgaris was observed. Lipid concentrations from different disruption methods were determined, and the fatty acid composition of the extracted lipids was analyzed. The results showed that average productivity of C. vulgaris biomass was 208 mg L⁻¹ day⁻¹. The lipid concentrations of C. vulgaris were 5%, 6%, 29%, 15%, 10%, 7%, 22%, 24%, and 18% when using grinding with quartz sand under wet condition, grinding with quartz sand under dehydrated condition, grinding in liquid nitrogen, ultrasonication, bead milling, enzymatic lysis by snailase, enzymatic lysis by lysozyme, enzymatic lysis by cellulose, and microwaves, respectively. The shortest disruption time was 2 min by grinding in liquid nitrogen. The unsaturated and saturated fatty acid contents of C. vulgaris were 71.76% and 28.24%, respectively. The extracted lipids displayed a suitable fatty acid profile for biodiesel [C16:0 (~23%), C16:1 (~23%), and C18:1 (~45%)]. Overall, grinding in liquid nitrogen was identified as the most effective method in terms of disruption efficiency and time.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-011-9207-1DOI Listing

Publication Analysis

Top Keywords

enzymatic lysis
16
fatty acid
12
grinding liquid
12
liquid nitrogen
12
chlorella vulgaris
8
vulgaris cells
8
ultrasonication bead
8
bead milling
8
milling enzymatic
8
disruption methods
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!