Chloride channels are expressed ubiquitously in different cells. However, the activation and roles of volume-activated chloride channels under normal isotonic conditions are not clarified, especially in lymphatic cells. In this study, the activation of basal and volume-activated chloride currents and their roles in maintenance of basal cell volume under isotonic conditions were investigated in human acute lymphoblastic leukemia Molt4 cells. The patch-clamp technique and time-lapse image analysis were employed to record whole-cell currents and cell volume changes. Under isotonic conditions, a basal chloride current was recorded. The current was weakly outward-rectified and volume-sensitive and was not inactivated obviously in the observation period. A 47% hypertonic bath solution and the chloride channel blockers NPPB and tamoxifen suppressed the current. Exposure of cells to 47% hypotonic bath solution activated further the basal current. The hypotonicity-activated current possessed properties similar to those of the basal current and was inhibited by NPPB, tamoxifen, ATP and hypertonic bath solution. Furthermore, extracellular hypotonic challenges swelled the cells and induced a regulatory volume decrease (RVD). Extracellular applications of NPPB, tamoxifen and ATP swelled the cells under isotonic conditions and inhibited the RVD induced by hypotonic cell swelling. The results suggest that some volume-activated chloride channels are activated under isotonic conditions, resulting in the appearance of the basal chloride current, which plays an important role in the maintenance of basal cell volume in lymphoblastic leukemia cells. Chloride channels can be activated further to induce a regulatory volume recovery when cells are swollen.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00232-011-9349-7DOI Listing

Publication Analysis

Top Keywords

chloride channels
20
isotonic conditions
20
cell volume
16
maintenance basal
12
basal cell
12
lymphoblastic leukemia
12
volume-activated chloride
12
bath solution
12
nppb tamoxifen
12
cells
9

Similar Publications

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

VX-770, C-A1, and Increased Intracellular cAMP Have Distinct Acute Impacts upon CFTR Activity.

Int J Mol Sci

January 2025

Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is dysfunctional in individuals with cystic fibrosis (CF). The permeability of CFTR can be experimentally manipulated though different mechanisms, including activation via inducing the phosphorylation of residues in the regulatory domain as well as altering the gating/open probability of the channel. Phosphorylation/activation of the channel is achieved by exposure to compounds that increase intracellular cAMP, with forskolin and IBMX commonly used for this purpose.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene. Currently, CFTR modulators are the most effective treatment for CF; however, they may not be suitable for all patients. A representative and convenient model is needed to screen therapeutic agents under development.

View Article and Find Full Text PDF

Diagnostic yield of cystic fibrosis from a South Australian monocentric cohort: a retrospective study.

BMJ Open

January 2025

Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia

Objectives: To determine the diagnostic yield of cystic fibrosis (CF) using a two-tiered genetic testing approach. Although newborn screening includes CF, this typically only covers a selection of common genetic variants, and with over 2000 reported in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, we hypothesised that patients will be missed and present clinically later in life.

Design: A retrospective study over a 5-year period (January 2018-December 2022).

View Article and Find Full Text PDF

Nanocellulose-toughened super-stretchable ionic conductive gel fibers for wearable strain sensors.

Int J Biol Macromol

January 2025

College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China. Electronic address:

In recent years, conductive gel materials have attracted extensive attention in the field of flexible electronics because of their excellent elasticity. When constructed as gel fibers, they can adapt to greater deformation, be woven, and be assembled with fabrics to make wearable smart devices without compromising comfort. However, gel fibers reported often exhibit insufficient mechanical properties and poor adaptability to different environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!