Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
PREVIOUS WORK HAS SHOWN THE FUNCTIONS ASSOCIATED WITH ACTIVATION OF DOPAMINE PRESYNAPTIC RECEPTORS IN SOME SUBSTANTIA NIGRA PARS RETICULATA (SNR) AFFERENTS: (i) striatonigral terminals (direct pathway) posses presynaptic dopamine D(1)-class receptors whose action is to enhance inhibitory postsynaptic currents (IPSCs) and GABA transmission. (ii) Subthalamonigral terminals posses D(1)- and D(2)-class receptors where D(1)-class receptor activation enhances and D(2)-class receptor activation decreases excitatory postsynaptic currents. Here we report that pallidonigral afferents posses D(2)-class receptors (D(3) and D(4) types) that decrease inhibitory synaptic transmission via presynaptic modulation. No action of D(1)-class agonists was found on pallidonigral synapses. In contrast, administration of D(1)-receptor antagonists greatly decreased striatonigral IPSCs in the same preparation, suggesting that tonic dopamine levels help in maintaining the function of the striatonigral (direct) pathway. When both D(3) and D(4) type receptors were blocked, pallidonigral IPSCs increased in amplitude while striatonigral connections had no significant change, suggesting that tonic dopamine levels are repressing a powerful inhibition conveyed by pallidonigral synapses (a branch of the indirect pathway). We then blocked both D(1)- and D(2)-class receptors to acutely decrease direct pathway (striatonigral) and enhance indirect pathways (subthalamonigral and pallidonigral) synaptic force. The result was that most SNr projection neurons entered a recurrent bursting firing mode similar to that observed during Parkinsonism in both patients and animal models. These results raise the question as to whether the lack of dopamine in basal ganglia output nuclei is enough to generate some pathological signs of Parkinsonism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039203 | PMC |
http://dx.doi.org/10.3389/fnsys.2011.00006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!