Background: Tissue eosinophilia is one of the hallmarks of allergic diseases and Th2-type immune responses including asthma. Systemic inflammation caused by adipose tissue in obesity via production of adipokines such as leptin has been attracting attention recently as a contributor to exacerbation of allergic immune reactions. In this study, we examined whether leptin might affect eosinophil chemotactic responses.
Methods: Peripheral blood eosinophils were purified, and the effect of leptin on eosinophil migration was investigated using in vitro systems.
Results: High concentrations of leptin induced eosinophil chemotaxis and rapid phosphorylation of ERK1/2 and p38 mitogen-activated protein kinase but not calcium mobilization. We also found that pretreatment of eosinophils with physiological concentrations of leptin amplified the chemotactic responses to eotaxin. This leptin-primed chemotaxis appears to be associated with increased calcium mobilization but not with ERK1/2 and p38 pathways.
Conclusions: These results indicate that leptin has both direct and indirect effects on eosinophil chemotaxis and intracellular signaling. In physiological settings, leptin may maintain eosinophil accumulation at allergic inflammatory foci.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000321195 | DOI Listing |
Int J Mol Sci
November 2024
Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.
Chronic spontaneous urticaria (CSU) is a debilitating condition characterized by mast cell activation. Platelet-activating factor (PAF) is produced by various immune cells, including mast cells, basophils, lymphocytes, and eosinophils, which play crucial roles in CSU pathogenesis. It induces mast cell degranulation, increases vascular permeability, and promotes the chemotaxis of inflammatory cells.
View Article and Find Full Text PDFDiscov Oncol
November 2024
Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), No.999, Donghai Avenue, Taizhou, 318000, Zhejiang, People's Republic of China.
Front Immunol
November 2024
Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Introduction: Allergic asthma has been linked to the activation of mast cells (MCs) by the neuropeptide substance P (SP), but the mechanism underlying this neuroimmune interaction is unknown. Substance P produced from cutaneous nociceptors activates MCs via Mas-related G-protein-coupled receptor B2 (MrgprB2) to enhance type 2 immune response in experimental atopic dermatitis in mice. We recently showed that the adapter protein β-arrestin2 (β-arr2) contributes to MrgprB2-mediated MC chemotaxis.
View Article and Find Full Text PDFAllergol Select
October 2024
Center for Child and Adolescent Health, Helios Hospital Krefeld, Academic Hospital of RWTH Aachen, Krefeld.
Int Immunopharmacol
December 2024
Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Allergy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Otorhinolaryngology Institute of Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, Guangzhou, China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. Electronic address:
Previous studies showed that serum amyloid A (SAA) and macrophages were associated with allergic airway inflammation. However, the interaction between SAA1 and macrophages in allergic airway inflammation remains to be further elucidated. In this study, the levels of SAA1 were measured in nasal tissues from patients with eosinophilic chronic rhinosinusitis with nasal polyps (CRSwNP), house dust mite (HDM)-treated BEAS-2B cells and the tissues of mice of HDM-induced allergic airway inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!