APOBEC3G, a potent HIV-1 host restriction factor, is overcome by HIV-1 viral infectivity factor (Vif), which induces its polyubiquitination and proteasomal degradation. Here we show that lysine-deficient APOBEC3G with an N-terminal hemagglutinin (HA) tag fusion (HA-A3G20K/R) was resistant to HIV-1 Vif-induced proteasomal degradation. HA-A3G20K/R molecules were packaged into wild-type HIV-1 particles, and HA-A3G20K/R drastically decreased wild-type HIV-1 reverse transcription products and infectivity. We also showed that the N terminus of A3G was a target of polyubiquitination induced by HIV-1 Vif. Thus, fusion of the HA tag to the N terminus of A3G20K/R reduced its polyubiquitination, the likely mechanism for the resistance of this protein to HIV-1 Vif-induced proteasomal degradation. Finding such ways to induce resistance of A3G to Vif may provide new approaches to anti-HIV/AIDS therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3126286 | PMC |
http://dx.doi.org/10.1128/JVI.01925-10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!