Background: During the process of fertilization, human spermatozoa are confronted with phagocytic cells of the female reproductive tract. Part of this host mucosal barrier are immature dendritic cells (DCs), which play an important role in the defense of invading microbial pathogens. In the present study, we investigated the potential interaction of spermatozoa with DCs and raised the question of whether seminal plasma impacts the interaction of DCs with spermatozoa or pathogenic microbes.
Methods And Results: Flow cytometry and microscopy detected a strong association between spermatozoa and human monocyte-derived DCs, which was partly mediated by the DC-specific adhesion receptor, DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN). Coincubation assays also showed that capture of spermatozoa by DCs was blocked in the presence of increasing concentrations of seminal plasma. This inhibitory effect of seminal plasma was accompanied by altered DC maturation, revealed by flow cytometry analysis of maturation-specific DC surface markers. Phalloidin-staining of the DC cytoskeleton further visualized an impact of seminal plasma on DC morphology. To elucidate the molecular nature of the inhibitory activity of seminal plasma on sperm-DC -association, binding assays were performed in the presence of individual seminal plasma components. This approach identified specific prostaglandins-in particular, PGE₁, 19-OH-PGE₁ and PGE₂, which are present in seminal plasma at high concentrations-as likely inhibitory factors. In contrast to glass beads, the yeast Candida albicans, a common commensal organism and frequent pathogen of the genital tract, was also found to be protected from capture by DCs in the presence of seminal plasma or the specific prostaglandins.
Conclusions: The immunomodulatory power of seminal plasma may help spermatozoa to circumvent the attack of DCs of the female reproductive tract, thereby supporting successful fertilization. At the same time, however, such protective effects of seminal plasma may also modulate DC action during host-pathogen interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/humrep/der038 | DOI Listing |
Infect Ecol Epidemiol
December 2024
Macha Research Trust, Choma, Zambia.
Background: Infectious disease agents pose significant threats to humans, wildlife, and livestock, with rodents carrying a third of these agents, many linked to human diseases. However, the range of pathogens in rodents and the hotspots for disease remain poorly understood.
Aim: This study evaluated the prevalence of viral, bacterial, and parasitic pathogens in rodents in riverine and non-riverine areas in selected districts in Zambia.
Glucose-6-Phosphatase (G6Pase), a key enzyme in gluconeogenesis and glycogenolysis in the mammalian liver and kidney, converts glucose-6-phosphate to glucose for maintaining systemic blood glucose homeostasis during nutrient deprivation. However, its function has remained elusive in insects, which have no need for G6Pase in sugar homeostasis since they convert glucose-6-phosphate to trehalose, their main circulating sugar, via trehalose phosphate synthase (TPS1). In this study we identify an unexpected and essential requirement for G6Pase in male fertility, specifically to produce motile sperm.
View Article and Find Full Text PDFPurpose Subfertility is a well-known aftermath of treatment of testicular germ cell tumours (GCTs). Growing evidence suggests reduced semen quality also before therapy. The present study aimed to evaluate pre-orchiectomy semen parameters in GCT patients and to compare the results with controls.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia.
Ann Med
December 2025
Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China.
Objectives: At present, most genetic tests or carrier screening are performed with blood samples, and the known carrier rate of disease-causing variants is also derived from blood. For semen donors, what is really passed on to offspring is the pathogenic variant in their sperm. This study aimed to determine whether pathogenic variants identified in the sperm of young semen donors are also present in their blood, and whether matching results for blood are consistent with results for sperm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!