This study examined the role of the Gα(q) signal constituted by Gα(q) and Gα(11) (encoded by Gnα(q) and Gnα(11), respectively), a major intracellular pathway of parathyroid hormone (PTH), in the PTH osteoanabolic action by the gain- and loss-of-function analyses. Transgenic mice with osteoblast-specific overexpression of the constitutively active Gnα(q) gene under the control of 2.3-kb type I collagen α1 chain (Col1a1) promoter exhibited osteopenia with decreased bone formation parameters and did not respond to the daily PTH treatment. We then established osteoblast-specific Gnα(q) and Gnα(11) double-knock-out (cDKO) mice by crossing the 2.3-kb Col1a1 promoter-Cre recombinase transgenic mice and those with Gnα(q) gene flanked with loxP and global ablation of Gnα(11) (Col1a1-Cre(+/-);Gna(q)(fl/fl);Gna(11)(-/-)) and found that the cDKO and single knock-out littermates of Gnα(q) or Gnα(11) exhibited normal bone volume and turnover under physiological conditions. With a daily injection of PTH, however, the cDKO mice, but not the single knock-out mice, showed higher bone volume and turnover than the wild-type littermates. Cultures of primary osteoblasts derived from cDKO and wild-type littermates confirmed enhancement of the PTH osteoanabolic action by the Gα(q) signal deficiency in a cell-autonomous mechanism, in association with the membrane translocation of protein kinase Cδ. This enhancement was reproduced by overexpression of regulator of G protein signaling-2, a Gα(q) signal inhibitor, in osteoblastic MC3T3-E1 cells. Hence, the Gα(q) signal plays an inhibitory role in the PTH osteoanabolic action, suggesting that its suppression may lead to a novel treatment in combination with PTH against osteoporosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075717 | PMC |
http://dx.doi.org/10.1074/jbc.M110.200196 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!