In situ FTIR spectroscopic study of the effect of CO2 sorption on H-bonding in PEG-PVP mixtures.

Spectrochim Acta A Mol Biomol Spectrosc

Tshwane University of Technology, Department of Polymer Technology, Lynnwoodridge, South Africa.

Published: May 2011

A study of the H-bonding between poly(ethylene glycol) (PEG) and polyvinylpyrrolidone (PVP) in the presence of supercritical carbon dioxide at various temperatures, pressures, different M(w) of PEG and PVP and different PEG/PVP ratios is presented. In situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was used to investigate H-bonding by examining changes in the relative intensities and positions of peak maxima of the 2nd derivative ν(C=O) bands associated with 'free' and H-bonded C=O groups. In general, relative intensities of bands associated with H-bonded CO groups decreased upon CO(2) sorption and was accompanied by an increase in intensity of bands associated with 'free' C=O groups. At the same time, these bands were shifted to higher wavenumbers. These shifts were attributed to the shielding effect of CO(2) molecules on H-bonding interactions between PEG and PVP. The magnitude of the effects of CO(2) shielding generally increased with decreasing polymer M(w) and increasing CO(2) content. However, upon CO(2) venting the extent of the H-bonding between PEG and PVP reappeared. The extent of H-bonding recovery was greatest for blends with low M(w) PEG (M(w): 4×10(2)) and PVP (M(w): 9×10(3)) and PEG content ≥0.54 wt% under mild conditions of pressure (80 bar) and temperature (35°C). For the same low M(w) blends, increasing pressure to 150 bar, or temperature to 50°C, showed poor H-bond recovery upon CO(2) venting. Overall, it was shown that supercritical CO(2)-induced shielding of H-bonding interactions in polymer blends is reversible upon CO(2) venting, and the magnitude of both was influenced by processing conditions and blend composition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2011.01.040DOI Listing

Publication Analysis

Top Keywords

peg pvp
12
bands associated
12
co2 venting
12
co2
8
co2 sorption
8
relative intensities
8
associated 'free'
8
c=o groups
8
h-bonding interactions
8
extent h-bonding
8

Similar Publications

Are metal-based antibacterial gels a potential alternative for disinfection in contemporary endodontics?

Evid Based Dent

January 2025

Doctoral Research Fellow and Specialty Trainee (Endodontics), School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.

Aims: This study aimed to assess the effectiveness of a novel antimicrobial gel, containing copper and silver nanoparticles, for use in root canal disinfection.

Methods: Copper and silver-based gels were created in-house, using a support network of biocompatible polymers, including polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG). Six experimental groups were created, three containing silver ions and three copper ions, where the PVA, PVP and PEG ratios were also adjusted in each group to test the gel's physical state.

View Article and Find Full Text PDF

Ketamine HCl, an FDA-approved therapeutic, is administered through various routes, including intranasal delivery. Administering an adequate therapeutic dose of intranasal ketamine HCl is challenging due to the limited volume that can be delivered intranasally given the current commercially available concentrations. This study investigates solubilizing strategies to enhance the aqueous solubility of ketamine HCl for intranasal administration.

View Article and Find Full Text PDF

Inkless paper made from photochromic materials has garnered significant interest owing to its potential to reduce both ink and paper pollution during production. In this research, we synthesized a dual-material film (EC-PVP/PGMEA/PMoA) and conducted a detailed investigation of its photochromic response to visible light and its microstructural properties. Initially, the film appeared as a translucent yellow, but upon exposure to visible light, it shifted to blue with a maximum absorption peak of 2.

View Article and Find Full Text PDF

Numerous members of the family Picornaviridae, such as the Senecavirus A (SVA) and foot-and-mouth disease virus (FMDV), exhibit thermal instability, resulting in the dissociation of viral particles, which affects the insufficient potency of the vaccine. Based on this characteristic, this study aimed to maintain the thermal stability of SVA by supplementing it with a stabilizer. Excipients, such as sucrose, mannitol, sorbitol, polyethylene glycol (PEG), L-arginine (L-Arg), glutamic acid (Glu), polyvinyl pyrrolidone (PVP), bovine serum albumin (BSA), and potassium chloride (KCl) dissolved in Tris-HCl buffer solution, retained the infectivity of SVA in the thermostability assay.

View Article and Find Full Text PDF

Impact of Polymers on the Kinetics of the Solid-State Phase Transition of Piracetam Polymorphs.

Mol Pharm

January 2025

State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.

Metastable polymorphs of active pharmaceutical ingredients can occasionally be used to enhance bioavailability or make processing more convenient. However, the thermodynamic instability of metastable polymorphs poses a severe threat to the quality and performance of the drug products. In this study, we used hot-stage microscopy and powder X-ray diffraction to quantitatively analyze the kinetics of the solid-solid phase transition of piracetam (PCM) polymorphs in the absence and presence of several polymeric excipients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!