By comparing five ecosystem types in the Czech Republic over several years, we recorded the highest carbon sequestration potential in an evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). Because of a massive ecosystem respiration, the final carbon gain of the grassland was negative. Climate was shown to be an important factor of carbon uptake by ecosystems: by varying the growing season length (a 22-d longer season in 2005 than in 2007 increased carbon sink by 13%) or by the effect of short- term synoptic situations (e.g. summer hot and dry days reduced net carbon storage by 58% relative to hot and wet days). Carbon uptake is strongly affected by the ontogeny and a production strategy which is demonstrated by the comparison of seasonal course of carbon uptake between coniferous (Norway spruce) and deciduous (European beech) stands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2010.11.025 | DOI Listing |
Int J Biol Macromol
December 2024
College of Textiles & Clothing, Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, Qingdao University, Qingdao 266071, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China. Electronic address:
Silk/polyamide fabric inherits the advantages of natural and synthetic fibers, making them remarkable in textile and garment field. However, the use of synthetic chemicals for color construction and functionalization of silk/polyamide fabrics is problematic because of their non-renewable resources and harmful effects on the environment. Furthermore, achieving even color construction of silk and polyamide fibers in one bath is challenging due to their significant differences in chemical structure and surface properties.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China. Electronic address:
Polyhydroxyalkanoates (PHAs) are biodegradable polyesters poised to replace plastics. Mixed culture (MC)-based three-stage processes are effective for carbon recovery from waste biomass, but the energy-intensive PHA synthesis is negatively affected by ammonia nitrogen, inhibiting PHA yield. This study aims to reuse ammonia nitrogen efficiently to mitigate its impact and prevent secondary pollution.
View Article and Find Full Text PDFMicrobiol Res
December 2024
State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China. Electronic address:
The rhizosphere microbiota, often referred to as the plant's "second genome" plays a critical role in modulating root system architecture (RSA). Despite this, existing methods to analyze root phenotypes in the context of root-microbe interactions remain limited, and the precise mechanisms affecting RSA by microbes are still not fully understood. This review comprehensively evaluates current root phenotyping techniques relevant to plant-microbe interactions, discusses their limitations, and explores future directions for integrating advanced technologies to elucidate microbial roles in altering RSA.
View Article and Find Full Text PDFEnviron Technol
December 2024
Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, USA.
A novel air-to-liquid mass transfer system using wetted rotating membranes was designed to enhance air-to-liquid carbon dioxide (CO) mass transfer efficiency. Traditional methods, such as sparging, are energy-intensive, but the rotating membrane reduces energy demands by optimising membrane wetting via rotational motion. Experimental tests were conducted using a small-scale system with a membrane width of 0.
View Article and Find Full Text PDFTrends Plant Sci
December 2024
State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
Our understanding of the physiological mechanisms of the plant hormetic response to countless environmental contaminants is rapidly advancing. However, the microbiome is a critical determinant of plant responses to stressors, thus possibly influencing hormetic responses. Here, we review the otherwise neglected role of microbes in shaping plant stimulation by subtoxic concentrations of contaminants and vice versa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!