Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With this work we would like to emphasize the necessity of steric repulsion to stabilize novel ionic liquid-based ferrofluids. For this purpose, we prepared a suspension of magnetite nanoparticles coated with a double layer of oleic acid, dispersed in 1-ethyl-3-methylimidazolium ethylsulphate ([EMIM][EtSO(4)]). For comparison, a suspension of bare magnetite nanoparticles in [EMIM][EtSO(4)] was also prepared. The stability of these suspensions was checked by magnetic sedimentation and centrifugation processes. Furthermore, their yield stress was measured as a function of the applied magnetic field, which gave additional information on their stability. The results of these experiments showed that the suspension of bare nanoparticles was rather unstable, whereas the suspension of double layer coated nanoparticles gave rise to a true (stable) ferrofluid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2011.01.083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!