Kinesins and protein kinases: key players in the regulation of microtubule dynamics and organization.

Arch Biochem Biophys

UPRES EA, Univ. Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France.

Published: June 2011

Microtubule dynamics is controlled and amplified in vivo by complex sets of regulators. Among these regulatory proteins, molecular motors from the kinesin superfamily are taking an increasing importance. Here we review how microtubule disassembly or assembly into interphase microtubules, mitotic spindle or cilia may involve kinesins and how protein kinases may participate in these kinesin-dependent regulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2011.02.012DOI Listing

Publication Analysis

Top Keywords

kinesins protein
8
protein kinases
8
microtubule dynamics
8
kinases key
4
key players
4
players regulation
4
regulation microtubule
4
dynamics organization
4
organization microtubule
4
dynamics controlled
4

Similar Publications

Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets.

View Article and Find Full Text PDF

Fragment based novel drug identification and its validation through use of molecular dynamics and simulations.Comparing primary microcephaly genes with glioblastoma expression profiles reveals potential oncogenes, with proteins that support growth and survival in neural stem/progenitor cells likely retaining critical roles in glioblastoma. Identifying such proteins in familial and congenital microcephalic disorders offers promising targets for brain tumor therapy.

View Article and Find Full Text PDF

Degradation of aberrant, excess, and regulatory proteins at the endoplasmic reticulum (ER) is a conserved feature of eukaryotic cells, disruption of which contributes to disease. While remarkable progress has been made in recent years, mechanisms and genetic requirements for ER-Associated Degradation (ERAD) remain incompletely understood. We recently conducted a screen for genes required for turnover of a model ER translocon-associated substrate of the Hrd1 ubiquitin ligase in .

View Article and Find Full Text PDF

KIF9 Ameliorates Neuropathology and Cognitive Dysfunction by Promoting Macroautophagy in a Mouse Model of Alzheimer's Disease.

Aging Cell

January 2025

Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder affecting the elderly. The imbalance of protein production and degradation processes leads to the accumulation of misfolded and abnormally aggregated amyloid-beta (Aβ) in the extracellular space and forms senile plaques, which constitute one of the most critical pathological hallmarks of AD. KIF9, a member of the kinesin protein superfamily, mediates the anterograde transport of intracellular cargo along microtubules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!