We report on the new mode of the vapor-liquid-solid nanowire growth with a droplet wetting the sidewalls and surrounding the nanowire rather than resting on its top. It is shown theoretically that such an unusual configuration happens when the growth is catalyzed by a lower surface energy metal. A model of a nonspherical elongated droplet shape in the wetting case is developed. Theoretical predictions are compared to the experimental data on the Ga-catalyzed growth of GaAs nanowires by molecular beam epitaxy. In particular, it is demonstrated that the experimentally observed droplet shape is indeed nonspherical. The new VLS mode has a major impact on the crystal structure of GaAs nanowires, helping to avoid the uncontrolled zinc blende-wurtzite polytylism under optimized growth conditions. Since the triple phase line nucleation is suppressed on surface energetic grounds, all nanowires acquire pure zinc blende phase along the entire length, as demonstrated by the structural studies of our GaAs nanowires.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl104238d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!