In this report, we developed a HBV infection model in C57BL/6 mouse line by in vivo injection of a recombinant adeno-associated virus 8 vector carrying 1. 3 copies of HBV genome (ayw subtype) (rAAV8-1. 3HBV). We firstly prepared and purified the rAAV8-1. 3HBV and then injected it into three C57BL/6 mice with the dose of 2 x 10e11vg, respectively. HBsAg and HBeAg were assayed in sera collected at different time points post injection. Ten weeks post injection, the three mice were sacrificed and blood and liver tissue were taken for assay. Copies of HBV DNA were detected by real time PCR and the way of HBV DNA replication was identified by PCR. Subsequently, detection of HBV antigen by immunohistochemistry and pathology analysis of liver tissue of mice were performed. The results suggested that expression of HBsAg and HBeAg lasted for at least 10 weeks in mice sera. Among mice injected with rAAV8-1. 3HBV, HBsAg levels were showed an 'increasing-decreasing-increasing' pattern (the lowest level at the 4th week post injection), while HBeAg levels were kept high and relatively stable. HBV DNA copies were 4.2 x 10(3), 3.6 x 10(3), 2.5 x 10(3) copies/mL in sera and 8.0 x 10(6), 5.7 x 10(6), 2.6 x 10(6) copies/g in hepatic tissues of three mice, respectively. We found that the linear 1. 3HBV DNA in the rAAV8-1. 3HBV could self form into circular HBV genome and replicate in livers of HBV transfected mice. HBsAg and HBcAg were both positive in liver tissue of mice injected with rAAV8-1. 3HBV and no obvious pathological characters were found in liver of mice injected with rAAV8-1. 3HBV. In conclusion, we successfully developed a HBV chronic infection model in C57BL/6 mouse line by in vivo transduction with the recombinant virus rAAV8-1. 3HBV, in which HBV genes could be continuously expressed and replicated over 10 weeks, and paved a way for further characterization of the human chronic hepatitis B virus infection and evaluation of vaccine and anti-HBV agents.

Download full-text PDF

Source

Publication Analysis

Top Keywords

raav8-1 3hbv
28
hbv
12
copies hbv
12
hbv genome
12
post injection
12
liver tissue
12
hbv dna
12
mice injected
12
injected raav8-1
12
mice
9

Similar Publications

Oncostatin M Induces IFITM1 Expression to Inhibit Hepatitis B Virus Replication Via JAK-STAT Signaling.

Cell Mol Gastroenterol Hepatol

January 2024

Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China. Electronic address:

Background & Aims: Functional cure is achieved by a limited number of patients with chronic hepatitis B (CHB) after nucleotide analogue(s) and interferon treatment. It is urgent to develop therapies that can help a larger proportion of patients achieve functional cure. The present study was designed to explore the anti-hepatitis B virus (HBV) potency of interleukin-6 family cytokines and to characterize the underlying mechanisms of the cytokine displaying the highest anti-HBV potency.

View Article and Find Full Text PDF

Mafosfamide Boosts GMI-HBVac against HBV via Treg Depletion in HBV-Infected Mice.

Vaccines (Basel)

May 2023

Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.

Chronic hepatitis B infection remains a significant worldwide health burden, placing persons at risk for hepatocellular cancer and hepatic fibrosis. Chronic hepatitis B virus (CHB) infection is characterized by elevated levels of immunosuppressive regulatory T cells (Tregs), which can inhibit the function of effector T cells and lead to an insufficient immune clearance response against HBV. Theoretically, suppression of Treg cell functionality and percentage could increase anti-HBV reactivity in CHB-infected patients, although this has not yet been explored.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Hepatitis B, an infectious disease caused by hepatitis B virus (HBV), is still a serious problem affecting global public health. Abrus cantoniensis Hance (AC), a traditional Chinese medicinal herb, has been used as a folk medicine for treating hepatitis in China from ancient times. However, its active ingredients are still unclear.

View Article and Find Full Text PDF

We determined the role of miR-520e in the replication of hepatitis B virus (HBV) and the growth of hepatocellular carcinoma (HCC) cells. MiR-520e and EPH receptor A2 (EphA2) in HBV-positive HCC tissues and cells were detected, and we studied the impact of miR-520e and the EphA2 receptor in cellular and murine HBV replication models. We find that MiR-520e was upregulated and EphA2 was downregulated in HBV-positive HCC tissues and cells.

View Article and Find Full Text PDF

[A recombinant adenovirus vector carrying murine interleukin-21 gene controls chronic HBV infection in mice].

Nan Fang Yi Ke Da Xue Xue Bao

November 2017

State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China. E-mail:

Objective: To investigate the effect of an adenovirus vector containing murine interleukin-21 gene (Ad-GFP-mIL-21) in virus clearance and on the production of HBV-specific antibodies in mice with persistent HBV infection.

Methods: ELISA and Western blot analysis were used to detect the expression of mIL-21 in the supernatant and cytoplasm of cultured HepG2.2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!