Chiral iridium spiro aminophosphine complexes: asymmetric hydrogenation of simple ketones, structure, and plausible mechanism.

Chem Asian J

State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China.

Published: March 2011

The iridium complexes of chiral spiro aminophophine ligands, especially the ligand with 3,5-di-tert-butylphenyl groups on the P atom (1c) were demonstrated to be highly efficient catalysts for the asymmetric hydrogenation of alkyl aryl ketones. In the presence of KOtBu as a base and under mild reaction conditions, a series of chiral alcohols were synthesized in up to 97% ee with high turnover number (TON up to 10,000) and high turnover frequency (TOF up to 3.7×10(4)  h(-1)). Investigation on the structures of the iridium complexes of ligands (R)-1a and 1c by X-ray analyses disclosed that the 3,5-di-tert-butyl groups on the P-phenyl rings of the ligand are the key factor for achieving high activity and enantioselectivity of the catalyst. Study of the catalysts generated from the Ir-(R)-1c complex and H(2) by means of ESI-MS and NMR spectroscopy indicated that the early formed iridium dihydride complex with one (R)-1c ligand was the active species, which was slowly transformed into an inactive iridium dihydride complex with two (R)-1c ligands. A plausible mechanism for the reaction was also suggested to explain the observations of the hydrogenation reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201000716DOI Listing

Publication Analysis

Top Keywords

asymmetric hydrogenation
8
plausible mechanism
8
iridium complexes
8
high turnover
8
iridium dihydride
8
dihydride complex
8
complex r-1c
8
chiral iridium
4
iridium spiro
4
spiro aminophosphine
4

Similar Publications

Asymmetric gem-Hydroboration and gem-Hydrogenation of Ynamides: A New Gateway to Chiral Fischer Carbene Complexes and their Catalytic Transformations.

Angew Chem Int Ed Engl

January 2025

Max-Planck-Institut fur Kohlenforschung, Organometallic Chemistry, Kaiser-Wilhelm-Platz 1, 45470, Mülheim/Ruhr, GERMANY.

Ynamides, when reacted with H2 or HBpin in the presence of [Cp*RuCl]4, convert into chiral-at-metal Fischer carbenes by regioselective gem-hydrogenation or gem-hydroboration of the polarized triple bond, respectively. gem-Hydroboration concomitantly affords a carbogenic borylated stereocenter adjacent to the ruthenium carbene unit, the configuration of which can be controlled using an Evans auxiliary. These are the first examples of asymmetric gem-addition reactions to alkynes known in the literature; representative pianostool ruthenium carbene complexes formed by this unconventional route were characterized by crystallographic and spectroscopic means.

View Article and Find Full Text PDF

A series of chiral hybrid diphosphorus ligands incorporating a conformationally flexible tropos diphenylmethane-based phosphoramidite unit have been developed and evaluated in the Rh-catalyzed asymmetric hydrogenation of 2-(1-arylvinyl)anilides and α-enamides, leading to up to >99% yield and 99% enantiomeric excess. Preliminary results from comparative studies showcased the extraordinary catalytic performance of these chiral tropos phosphine-phosphoramidite ligands, with a competency essentially superior to those of well-established ligands with a regular rigid backbone.

View Article and Find Full Text PDF

Enantioselective hydrogenation of tetrasubstituted alkenes to form 1,2-contiguous stereocenters is a particularly appealing but highly challenging transformation in asymmetric catalysis. Despite the notable progress achieved in enantioselective hydrogenation over the past decades, enantioselective hydrogenation of all-carbon tetrasubstituted alkenes containing multiple alkyl groups remains an unsolved challenge. Here, we report a rhodium-catalyzed highly diastereo- and enantioselective hydrogenation of diverse acyclic multisubstituted alkenes under mild conditions.

View Article and Find Full Text PDF

3-Iodo-aniline.

IUCrdata

December 2024

Nelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa.

The title compound, CHIN, is the -iodinated derivative of aniline. The asymmetric unit contains two mol-ecules. The structure was refined as a two-component inversion twin with a volume ratio of 55.

View Article and Find Full Text PDF

The title compound, {(CHNO)[SnBr]} , is a layered hybrid perovskite crystallizing in the monoclinic space group 2/. The asymmetric unit consists of one HC-O-NH -CH cation (MeHA), one Sn atom located on a twofold rotation axis, and two Br atoms. The Sn atom has a distorted octa-hedral coordination environment formed by the bromido ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!