Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/Schinzel (AA/RRS) phocomelia syndrome are rare autosomal recessive inherited disorders characterized by aplastic/hypoplastic nails with ectopic dorsal palms, absence of humeri, hypoplastic ulnae, and bowed short radii with the elbow joints present, shown to result from missense mutations in WNT7A (p.Ala109Thr and p.Arg292Cys). Here, we describe three affected individuals belonging to two related Saudi Arabian families. All three have a similar phenotype characterized by pelvic dysplasia and truncated lower limbs compatible with the clinical diagnosis of AA/RRS. The upper limbs were more variable: one patient individual had complete amelia, whereas the others had variable limb malformations and all had absence of nails and the ventralization of the palms/digits. All affected individuals were homozygous for a mutation in exon 4 of WNT7A (c.610G>A) resulted in substitution of a highly conserved glycine to serine (p.Gly204Ser) within the Wnt signature motif [C-K-C-H-G-V-S-G-S-C]. This report describes a third cases/family in the literature with variable phenotype of AA/RRS and Fuhrmann syndrome. Identification of this mutation further underlines the crucial involvement of WNT7A in the limb development. This novel missense homozygous mutation (p.Gly204Ser) in the WNT7A gene is a unique mutation in the degree of loss of function in the upper limb development which ranges from mild to complete absence of both upper limbs (amelia). Moreover, all three affected individuals had genitourinary anomalies, linking WNT7A function to genitourinary development.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.33717DOI Listing

Publication Analysis

Top Keywords

pgly204ser wnt7a
8
wnt7a gene
8
fuhrmann syndrome
8
three individuals
8
upper limbs
8
homozygous mutation
8
limb development
8
wnt7a
6
mutation
5
novel homozygous
4

Similar Publications

Cleft palate is the most prevalent congenital condition. Cleft palate is brought on by an exogenous chemical called all-trans retinoic acid (atRA). In order to indirectly control gene expression, long chain non-coding RNAs (lncRNAs) act as competitive endogenous RNA (ceRNA) sponges.

View Article and Find Full Text PDF

Intramuscular injection of Wnt7a has been shown to accelerate and augment skeletal muscle regeneration and to ameliorate dystrophic progression in mdx muscle, a model for Duchenne muscular dystrophy (DMD). Here, we assessed muscle regeneration and function in wild type (WT) and mdx mice where Wnt7a was deleted in muscle using a conditional Wnt7a floxed allele and a Myf5-Cre driver. We found that both WT and mdx mice lacking Wnt7a in muscle, exhibited marked deficiencies in muscle regeneration at 21 d following cardiotoxin (CTX) induced injury.

View Article and Find Full Text PDF

Wnt proteins are hydrophobic glycoproteins that are nevertheless capable of long-range signaling. We found that Wnt7a is secreted long distance on the surface of extracellular vesicles (EVs) following muscle injury. We defined a signal peptide region in Wnts required for secretion on EVs, termed exosome-binding peptide (EBP).

View Article and Find Full Text PDF

The limited infiltration of CD8+ T cells in tumors hampers the effectiveness of T cell-based immunotherapy, yet the mechanisms that limit tumor infiltration by CD8+ T cells remain unclear. Through bulk RNA sequencing of human tumors, we identified a strong correlation between WNT7A expression and reduced CD8+ T-cell infiltration. Further investigation demonstrated that inhibiting WNT7A substantially enhanced MHC-I expression on tumor cells.

View Article and Find Full Text PDF

Background: Megaleporinus macrocephalus (piauçu) is a Neotropical fish within Characoidei that presents a well-established heteromorphic ZZ/ZW sex determination system and thus constitutes a good model for studying W and Z chromosomes in fishes. We used PacBio reads and Hi-C to assemble a chromosome-level reference genome for M. macrocephalus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!