Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
One of the essential elements of any cell, including primitive ancestors, is a structural component that protects and confines the metabolism and genes while allowing access to essential nutrients. For the targeted protocell model, bilayers of decanoic acid, a single-chain fatty acid amphiphile, are used as the container. These bilayers interact with a ruthenium-nucleobase complex, the metabolic complex, to convert amphiphile precursors into more amphiphiles. These interactions are dependent on non-covalent bonding. The initial rate of conversion of an oily precursor molecule into fatty acid was examined as a function of these interactions. It is shown that the precursor molecule associates strongly with decanoic acid structures. This results in a high dependence of conversion rates on the interaction of the catalyst with the self-assembled structures. The observed rate logically increases when a tight interaction between catalyst complex and container exists. A strong association between the metabolic complex and the container was achieved by bonding a sufficiently long hydrocarbon tail to the complex. Surprisingly, the rate enhancement was nearly as strong when the ruthenium and nucleobase elements of the complex were each given their own hydrocarbon tail and existed as separate molecules, as when the two elements were covalently bonded to each other and the resulting molecule was given a hydrocarbon tail. These results provide insights into the possibilities and constraints of such a reaction system in relation to building the ultimate protocell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201000843 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!