We present a case of traumatic dislocation of the incudostapedial joint (ISJ) and a simple method for controlled application of the glue using commercial fibrin tissue adhesive. A 26-year-old female presented to our ENT clinic for hearing impairment to her left ear 2 months after a head trauma due to a motorcycle accident. The audiogram revealed a 40- to 50-dB HL conductive hearing loss with a notch configuration in bone conduction curve on the left ear. Computed tomography of the left temporal bone revealed a longitudinal fracture line. An exploratory tympanotomy was performed under general anesthesia. The ISJ was found dislocated while the incus was trapped by the edges of the bony lateral attic wall fracture. A small bony edge that impeded incus movement was removed and a small amount of the glue was precisely applied to the lenticular process of the incus with an angled incision knife. The long process of the incus was firmly pressed over the stapes for 30 seconds with a 90° hook and 60 seconds after the application of the glue the ISJ was repaired. One year after our patient achieved full airbone gap (ABG) closure (ABG, ≤10 dB HL), while she demonstrated overclosure in frequencies 2 and 4 kHz. Fibrin tissue glue allowed safe, rapid, and accurate repair of the ISJ and resulted in an anatomically normal articulation as the mass and shape of the ossicles was preserved. Moreover, our patient achieved full ABG closure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/lary.21427 | DOI Listing |
Vet Res Commun
January 2025
Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
Southern right whales (Eubalaena australis) are mysticete cetaceans commonly observed in the coastal waters of Brazil, particularly in Santa Catarina State. There is limited understanding of the causes of calf mortality in this species, particularly concerning infectious diseases. We report a case of omphalophlebitis caused by Streptococcus equi subsp.
View Article and Find Full Text PDFEur J Immunol
January 2025
Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, The Netherlands.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the placenta can lead to fetal distress and demise, characterized by severe trophoblast necrosis, chronic histiocytic intervillositis (CHI), and massive perivillous fibrin deposition. We aimed to uncover spatial immune-related protein changes in SARS-CoV-2 placentitis compared with CHI placentas and uncomplicated pregnancies to gain insight into the underlying pathophysiological mechanisms. Placentas were retrospectively collected from cases with SARS-CoV-2 placentitis resulting in fetal distress/demise (n = 9), CHI (n = 9), and uncomplicated term controls (n = 9).
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Affiliated Calmette Hospital of Kunming Medical University, Kunming, 650000, China.
ACS Appl Bio Mater
January 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!