Shrub-steppe early succession following juniper cutting and prescribed fire.

Environ Manage

United States Department of Agriculture, Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, OR, USA.

Published: March 2011

Pinus-Juniperus L. (Piñon-juniper) woodlands of the western United States have expanded in area nearly 10-fold since the late 1800's. Juniperus occidentalis ssp. occidentalis Hook. (western juniper) dominance in sagebrush steppe has several negative consequences, including reductions in herbaceous production and diversity, decreased wildlife habitat, and higher erosion and runoff potentials. Prescribed fire and mechanical tree removal are the main methods used to control J. occidentalis and restore sagebrush steppe. However, mature woodlands become difficult to prescribe burn because of the lack of understory fuels. We evaluated partial cutting of the woodlands (cutting 25-50% of the trees) to increase surface fuels, followed by prescribed fire treatments in late successional J. occidentalis woodlands of southwest Idaho to assess understory recovery. The study was conducted in two different plant associations and evaluated what percentage of the woodland required preparatory cutting to eliminate remaining J. occidentalis by prescribed fire, determined the impacts of fire to understory species, and examined early post-fire successional dynamics. The study demonstrated that late successional J. occidentalis woodlands can be burned after pre-cutting only a portion of the trees. Early succession in the cut-and-burn treatments were dominated by native annual and perennial forbs, in part due to high mortality of perennial bunchgrasses. By the third year after fire the number of establishing perennial grass seedlings indicated that both associations would achieve full herbaceous recovery. Cutting-prescribed fire combinations are an effective means for controlling encroaching late successional J. occidentalis and restoring herbaceous plant communities. However, land managers should recognize that there are potential problems associated with cutting-prescribed fire applications when invasive weeds are present.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00267-011-9629-0DOI Listing

Publication Analysis

Top Keywords

prescribed fire
16
late successional
12
successional occidentalis
12
early succession
8
fire
8
sagebrush steppe
8
occidentalis woodlands
8
cutting-prescribed fire
8
occidentalis
7
woodlands
5

Similar Publications

This paper examines the intersection of environmental history and the history of science, specifically the impact of forestry science and fire management on land use and community dynamics in rural Portuguese mountains. It further traces the evolution of fire management from an ancestral rural practice to a scientific concern and the subsequent integration of vernacular knowledge with scientific methods. In the early twentieth century, fire was a common tool in rural Portugal for land clearance, pasture management, and soil enrichment.

View Article and Find Full Text PDF

Encountering Prescribed Fire: Characterizing the Intersection of Prescribed Fire and Wildfire in the CONUS.

ACS EST Air

December 2024

Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709, United States.

Prescribed fire is applied across the United States as a fuel treatment to manage the impact of wildfires and restore ecosystems. While the recent application of prescribed fire has largely been confined to the southeastern US, the increase in catastrophic wildfires has accelerated the growth of prescribed fire more broadly. To effectively achieve wildfire risk reduction benefits, which includes reducing the amount of smoke emitted, the area treated by prescribed fire must come into contact with a subsequent wildfire.

View Article and Find Full Text PDF

Simulating fuel management for protecting regional biodiversity under climate change.

J Environ Manage

December 2024

Fire Ecology and Biodiversity Group, The University of Melbourne, School of Agriculture, Food and Ecosystem Sciences, Creswick, VIC, Australia.

Climate change is resulting in larger, more frequent, and more severe wildfires which have increasingly negative impacts on people and the environment. Under these circumstances, it is critical to determine whether fire management actions can mitigate biodiversity impacts under future fire regimes. However, it is currently unclear how changing climate and management interact to influence the spatial distribution of risks to biodiversity.

View Article and Find Full Text PDF

Wildland fire-atmosphere interaction generates complex turbulence patterns, organized across multiple scales, which inform fire-spread behaviour, firebrand transport, and smoke dispersion. Here, we utilize wavelet-based techniques to explore the characteristic temporal scales associated with coherent patterns in the measured temperature and the turbulent fluxes during a prescribed wind-driven (heading) surface fire beneath a forest canopy. We use temperature and velocity measurements from tower-mounted sonic anemometers at multiple heights.

View Article and Find Full Text PDF

Fire exclusion over the last two centuries has driven a significant fire deficit in the forests of western North America, leading to widespread changes in the composition and structure of these historically fire-adapted ecosystems. Fuel treatments have been increasingly applied over the last few decades to mitigate fire hazard, yet it is unclear whether these fuel-focused treatments restore the fire-adapted conditions and species that will allow forests to persist into the future. A vital prerequisite of restoring fire-adaptedness is ongoing establishment of fire-tolerant tree species, and both the type and reoccurrence of fuel treatments are likely to strongly influence stand trajectories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!