To ensure long-term persistence, organisms must adapt to climate change, but an evolutionary response to a quantified selection pressure driven by climate change has not been empirically demonstrated in a wild population. Here, we show that pheomelanin-based plumage colouration in tawny owls is a highly heritable trait, consistent with a simple Mendelian pattern of brown (dark) dominance over grey (pale). We show that strong viability selection against the brown morph occurs, but only under snow-rich winters. As winter conditions became milder in the last decades, selection against the brown morph diminished. Concurrent with this reduced selection, the frequency of brown morphs increased rapidly in our study population during the last 28 years and nationwide during the last 48 years. Hence, we show the first evidence that recent climate change alters natural selection in a wild population leading to a microevolutionary response, which demonstrates the ability of wild populations to evolve in response to climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105316 | PMC |
http://dx.doi.org/10.1038/ncomms1213 | DOI Listing |
Trop Med Health
January 2025
School of Medicine, Private Technical University of Loja, Loja, 110101, Ecuador.
Introduction: Dengue is one of the most widespread arboviruses in Latin America and is now affecting areas previously free of transmission. The COVID-19 pandemic and climatic variations appear to have affected the incidence of the disease, abundance of vectors and health programs related to dengue in some countries.
Objective: To analyze the epidemiology of dengue in Paltas, Ecuador (2016-2022), compare the periods before and during the COVID-19 pandemic, examine entomological reports and discuss the possible implications of the COVID-19 pandemic and climatic variations.
BMC Plant Biol
January 2025
Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan.
Cotton is essential for the global textile industry however, climate change, especially extreme temperatures, threatens sustainable cotton production. This research aims to identify breeding strategies to improve heat tolerance and utilize stress-resistant traits in cotton cultivars. This study investigated heat tolerance for 50 cotton genotypes at the seedling stage by examining various traits at three temperatures (32 °C, 45 °C and 48 °C) in a randomized plot experiment.
View Article and Find Full Text PDFTurnover in species composition through time is a dominant form of biodiversity change, which has profound effects on the functioning of ecological communities. Turnover rates differ markedly among communities, but the drivers of this variation across taxa and realms remain unknown. Here we analyse 42,225 time series of species composition from marine, terrestrial and freshwater assemblages, and show that temporal rates of turnover were consistently faster in locations that experienced faster temperature change, including both warming and cooling.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
Plastic pollution and global warming are widespread issues that lead to several impacts on aquatic organisms. Despite harmful studies on both subjects, there are few studies on how temperature increases plastics' adverse effects on aquatic animals, mainly freshwater species. So, this study aims to clarify the potential impact of temperature increases on the toxicological properties of polyvinyl chloride nano-plastics (PVC-NPs) in Nile tilapia (Oreochromis niloticus) by measuring biochemical and oxidative biomarkers.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Genetics, Indian Agricultural Research Institute, New Delhi, India.
With climate change projections indicating an increase in the frequency of extreme heat events and irregular rainfall patterns globally, the threat to global food security looms large. Terminal heat stress, which occurs during the critical reproductive stage, significantly limits lentil productivity. Therefore, there is an urgent need to improve lentil's resilience to heat stress to sustain production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!