Cerium(IV) oxide nanoparticles were synthesized using an inverse miniemulsion technique with cerium nitrate hexahydrate as precursor. The resulting nanocrystallites are as small as 5 nm with a specific surface area of 158 m² g⁻¹ after calcination at 400 °C. With the addition of cetyltrimethylammonium bromide (CTAB) or (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)) triblock copolymers (PEO-PPO-PEO) as template in the miniemulsion droplets, the specific surface area can be increased up to 255 m² g⁻¹. The miniemulsions were characterized by dynamic light scattering (DLS) and the obtained oxides were examined by x-ray diffraction (XRD), nitrogen sorption (BET and BJH), and transmission electron microscopy (TEM). The catalytic activity of the resulting ceria was investigated for the temperature-programmed oxidation (TPO) of methane.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/22/13/135606DOI Listing

Publication Analysis

Top Keywords

nanoparticles synthesized
8
synthesized inverse
8
inverse miniemulsion
8
miniemulsion technique
8
specific surface
8
surface area
8
m² g⁻¹
8
mesoporous ceo₂
4
ceo₂ nanoparticles
4
technique catalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!