Cyclin D1 inhibits mitochondrial activity in B cells.

Cancer Res

Biologie Moléculaire et Cellulaire de la Signalisation, EA 3919, UFR de médecine, IFR 146, Université de Caen, Caen, France.

Published: March 2011

Cyclin D1 is a cell cycle regulatory protein that acts at the G1-S transition, following its binding to and activation by the cyclin-dependent kinases 4 or 6. Cyclin D1 is absent from the entire B-cell lineage but is present in a large percentage of 2 types of malignant B-cell hemopathy--mantle cell lymphoma and multiple myeloma--suggesting a major role of this protein in the malignancy process. We show here, in an experimental model of cyclin D1 fusion protein transduction in mature B cells, that, cyclin D1 inhibits total mitochondrial activity. Cyclin D1 is localized at the outer mitochondrial membrane, bound to a voltage-dependent anion channel through its central domain, and it competes with hexokinase 2 for binding to this channel. The bound cyclin D1 decreases the supply of ADP, ATP, and metabolites, thereby reducing energy production. This function of cyclin D1 was also reported by others in normal and transformed mammary epithelial cells, suggesting that it may be ubiquitous.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-10-2564DOI Listing

Publication Analysis

Top Keywords

cyclin
8
cyclin inhibits
8
mitochondrial activity
8
cells cyclin
8
inhibits mitochondrial
4
activity cells
4
cyclin cell
4
cell cycle
4
cycle regulatory
4
regulatory protein
4

Similar Publications

SPT5 regulates RNA polymerase II stability via Cullin 3-ARMC5 recognition.

Sci Adv

January 2025

Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

The stability of RNA polymerase II (Pol II) is tightly regulated during transcriptional elongation for proper control of gene expression. Our recent studies revealed that promoter-proximal Pol II is destabilized via the ubiquitin E3 ligase cullin 3 (CUL3) upon loss of transcription elongation factor SPT5. Here, we investigate how CUL3 recognizes chromatin-bound Pol II as a substrate.

View Article and Find Full Text PDF

The TRIM-NHL RNA-binding protein MEI-P26 modulates the size of Drosophila Type I neuroblast lineages.

Genetics

January 2025

Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.

The Drosophila TRIM-NHL RNA-binding protein (RBP), MEI-P26, has previously been shown to suppress tumor formation in the germline. Here we show that, in the Drosophila larval central brain, cell-type specific expression of MEI-P26 plays a vital role in regulating neural development. MEI-P26 and another TRIM-NHL RBP, Brain tumor (BRAT), have distinct expression patterns in Type I neuroblast (NB) lineages: While both proteins are expressed in NBs, BRAT is expressed in ganglion mother cells (GMCs) but not neurons whereas MEI-P26 is expressed in neurons but not GMCs.

View Article and Find Full Text PDF

Background: The skin, with its robust structural integrity and advanced immune defense system, serves as a critical protective barrier against environmental toxins and carcinogenic compounds. Despite this, it remains vulnerable to the harmful effects of certain hazardous agents.

Objectives: This study aimed to investigate the chemopreventive potential of β-caryophyllene (BCP) in mitigating 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin carcinogenesis, focusing on the modulation of apoptosis and PI3K/AKT signaling pathways.

View Article and Find Full Text PDF

AT7519, which inhibits multiple cyclin-dependent kinases, has been extensively investigated in various types of cancer cells. Previous studies have demonstrated the ability of this molecule to suppress the expression of the nuclear receptor retinoic acid-related orphan receptor gamma (RORγ) and several genes involved in hepatocellular carcinoma progression. In this study, we identified a distinct agonistic effect of AT7519 on RORγt, an isoform expressed by various immune cells, including T helper 17 lymphocytes.

View Article and Find Full Text PDF

Palbociclib is a cyclin-dependent kinase 4/6 inhibitor and a commonly used antitumor drug. Many cancers are susceptible to palbociclib resistance, however, the underlying metabolism mechanism and extent of resistance to palbociclib are unknown. In this study, LC-MS metabolomics was used to investigate the metabolite changes of colorectal cancer SW620 cells that were resistant to palbociclib.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!