Phantom flashes caused by interactions across visual space.

J Vis

Vision Sciences Laboratory, Department of Psychology, Harvard University, Cambridge, MA 02138, USA.

Published: February 2011

Studies regarding the effects of context on the perception of a visual target's temporal properties have generally addressed the cross-modal integration of auditory context, within a functional or ecological (e.g., Bayesian) framework. A deeper understanding of contextual effects in temporal vision may be gained by drawing connections with the rich models of signal processing developed in the field of spatial vision. To bridge this gap, we investigate a purely visual version of the cross-modal "double-flash" illusion (L. Shams, Y. Kamitani, & S. Shimojo, 2000; J. T. Wilson & W. Singer, 1981). Here, a single target flash can be perceived as several flashes if it is presented in the context of multiple visual inducers. This effect is robust across conditions where the target and inducers are of opposite contrast polarity, in different hemifields, are non-collinear, are presented dichoptically, or are high-frequency Gabor patches. The effect diminishes when target-inducer distance is increased or when the target is moved toward the fovea. When the target is foveated, the effect can still be recovered if the inducers are placed at 3° distance. Finally, we find that multiple target flashes are not "merged" into a smaller number of perceived flashes when presented with singular inducers. These results suggest a cortical mechanism based on isotropic propagation of transient signals or possibly based on higher level event detection. Finally, we find that multiple target flashes are not "merged" into a smaller number of perceived flashes when presented with singular inducers. These results suggest a mechanism based on the propagation of transient signals and argue against the relevance of the cue integration model developed for the cross-modal version of the effect.

Download full-text PDF

Source
http://dx.doi.org/10.1167/11.2.14DOI Listing

Publication Analysis

Top Keywords

perceived flashes
12
flashes presented
12
finally find
8
find multiple
8
multiple target
8
target flashes
8
flashes "merged"
8
"merged" smaller
8
smaller number
8
number perceived
8

Similar Publications

A critical goal of vision is to detect changes in light intensity, even when these changes are blurred by the spatial resolution of the eye and the motion of the animal. Here, we describe a recurrent neural circuit in Drosophila that compensates for blur and thereby selectively enhances the perceived contrast of moving edges. Using in vivo, two-photon voltage imaging, we measured the temporal response properties of L1 and L2, two cell types that receive direct synaptic input from photoreceptors.

View Article and Find Full Text PDF

The fact that blinks occur more often than necessary for ocular lubrication has led to the proposal that blinks are involved in altering some aspects of visual cognition. Previous studies have suggested that blinking can modulate the alternation of different visual interpretations of the same stimulus, that is, perceptual alternation in multistable perception. This study investigated whether and how different types of blinks, spontaneous and voluntary, interact with perceptual alternation in a multistable perception paradigm called continuous flash suppression.

View Article and Find Full Text PDF

There is a speed-accuracy trade-off in perception. The ability to quickly extract sensory information is critical for survival, while extended processing can improve our accuracy. It has been suggested that emotions can change our style of processing, but their influence on processing speed is not yet clear.

View Article and Find Full Text PDF

Purpose: Visual evoked potentials (VEPs) are electrical signals generated at the visual cortex following visual stimulation. Flash VEPs (fVEPs) are produced by global retinal stimulation and are considered an objective measure of the integrity of the entire visual pathway. However, fVEP measurements are highly sensitive to external variables, making relative comparisons of the fVEP waveforms between the two eyes in the same individual challenging.

View Article and Find Full Text PDF

Evaluation of a New Mobile Virtual Reality Setup to Alter Pain Perception: Pilot Development and Usability Study in Healthy Participants.

JMIR Serious Games

December 2024

CORE Lab, Psychosomatic Competence Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 41, Bern, 3010, Switzerland, 41 31 632 70 00.

Background: Chronic pain presents a significant treatment challenge, often leading to frustration for both patients and therapists due to the limitations of traditional methods. Research has shown that synchronous visuo-tactile stimulation, as used in the rubber hand experiment, can induce a sense of ownership over a fake body part and reduces pain perception when ownership of the fake body part is reported. The effect of the rubber hand experiment can be extended to the full body, for example, during the full-body illusion, using both visuo-tactile and cardiovisual signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!