Background: Pharmacological inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) are currently evaluated in clinical trials for various malignancies but, interestingly, also proved of remarkable efficacy in preclinical models of autoimmune disorders including experimental autoimmune encephalomyelitis (EAE).
Objectives: The objectives of the study were to determine molecular mechanisms underlying suppression of the encephalitogenic response by these drugs; likewise, whether clinically-relevant post-treatment paradigms with PARP-1 inhibitors could prevent EAE relapses.
Methods: Adopted both in vitro techniques (bone marrow-derived cultured DC) as well as in vivo models of chronic or relapsing-remitting (RR) EAE.
Results: We report that two structurally unrelated PARP-1 inhibitors negatively regulated NFκB activation, as well as maturation, cytokine production and APC function of cultured mouse bone marrow-derived dendritic cells (DCs). PARP-1 inhibitors also reduced the number and APC function of DCs migrating in the draining lymph nodes of ovalbumin-immunized mice. In C57Bl mice with chronic EAE or SJL mice with RR EAE, pharmacological inhibition of PARP-1 reduced CNS DC migration and demyelination as well as neurological impairment to an extent similar to that achieved with the potent immunosuppressant cyclosporine A. Remarkably, PARP-1 inhibitors injected after the first phase of disease reduced relapse incidence and severity, as well as the spinal cord number of autoreactive Th17 cells. Under this clinically-relevant treatment paradigm, PARP inhibitors also suppressed epitope spreading of the encephalitogenic response.
Conclusions: Overall, data underscore the potential relevance of PARP-1 inhibitors to MS therapy and suppression of autoimmunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1352458511399113 | DOI Listing |
Am J Physiol Cell Physiol
January 2025
Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA.
Hepatic lipotoxicity, resulting from excessive lipid accumulation in hepatocytes, plays a central role in the pathogenesis of various metabolic liver diseases. Despite recent progress, the precise mechanisms remain incompletely understood. Employing excessive exposure to palmitate in hepatocytes as our primary experimental model and mice studies, we aimed to uncover the mechanisms behind hepatic lipotoxicity, thereby developing potential treatments.
View Article and Find Full Text PDFNat Commun
January 2025
Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.
View Article and Find Full Text PDFBiomolecules
January 2025
Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain.
PARP-1 has been linked to the progression of several types of cancer. We have recently reported that PARP-1 influences tumor progression in CRC through the regulation of CSCs in a p53-dependent manner. In this study, we propose that nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) could act as a mediator.
View Article and Find Full Text PDFBioorg Chem
January 2025
FSBI A A Smorodintsev Research Institute of Influenza, Saint Petersburg, Russian Federation. Electronic address:
Poly(ADP-ribose) polymerase-1 (PARP-1) is the key enzyme among other PARPs for post-translational modification of DNA repair proteins. It has four functional domains for DNA-binding, automodification and enzymatic activity. PARP-1 participates in poly-ADP-ribosylation of itself or other proteins during DNA damage response.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Centro de Investigación en Ingeniería Molecular-CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru.
Glioblastoma multiforme (GBM) is one of the most aggressive and treatment-resistant forms of brain cancer. Current therapeutic strategies, including surgery, chemotherapy, and radiotherapy, often fail due to the tumor's ability to develop resistance. The proteins YAP-1 (Yes-associated protein 1) and PARP-1 (Poly-(ADP-ribose)-polymerase-1) have been implicated in this resistance, playing crucial roles in cell proliferation and DNA repair mechanisms, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!